Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Validation and Application of a Methodology to Calculate Head Accelerations and Neck Loading in Soccer Ball Impacts

2009-04-20
2009-01-0251
Calculating head accelerations and neck loading is essential for understanding and predicting head and neck injury. Most of the desired information cannot be directly measured in experiments with human volunteers. Achieving accurate results after applying the necessary transformations from remote measurements is difficult, particularly in the case of a head impact. The objective of this study was to develop a methodology for accurately calculating the accelerations at the center of gravity of the head and the loads and moments at the occipital condyles. To validate this methodology in a challenging test condition, twenty (20) human volunteers and a Hybrid III dummy were subjected to forehead impacts from a soccer ball traveling horizontally at speeds up to 11.5 m/s. The human subjects and the Hybrid III were instrumented with linear accelerometers and an angular rate sensor inside the mouth.
Journal Article

Occupant Ejection Trajectories in Rollover Crashes: Full-Scale Testing and Real World Cases

2008-04-14
2008-01-0166
A simple two-dimensional particle model was previously developed to calculate occupant ejection trajectories in rollover crashes. Model parameters were optimized using data from a dolly rollover test of a 1998 Ford Expedition in which five unbelted anthropomorphic test devices (ATDs) were completely ejected. In the present study, the model was further validated against a dolly rollover test of a 2004 Volvo XC90 in which three unbelted ATDs were completely ejected. The findings from the experimental testing were then compared to two real world rollover crashes with occupant ejections that were captured on video. The crashes were reconstructed by analyzing the video footage and aerial images of the crash sites. In both cases, the model was able to accurately match the observed trajectories of the ejected occupants, and the optimized model parameters were similar to the values obtained from the dolly rollover testing.
Technical Paper

Trajectory Model of Occupants Ejected in Rollover Crashes

2007-04-16
2007-01-0742
A simple two-dimensional particle model was developed to predict the airborne trajectory, landing point, tumbling distance, and rest position of an occupant ejected in a rollover crash. The ejected occupant was modeled as a projectile that was launched tangentially at a given radius from the center of gravity of the vehicle. The landing and tumbling phases of the ejection were modeled assuming a constant coefficient of friction between the occupant and the ground. Model parameters were optimized based on a dolly rollover test of a 1998 Ford Expedition in which five unbelted anthropomorphic test devices (ATDs) were completely ejected. A generalized vehicle dynamics model was also created assuming a constant translational deceleration and a prescribed roll rate function. Predictions using the generalized model were validated against the results of the full-scale rollover test to estimate the expected error when using the model in a real world situation.
Technical Paper

Data Censoring and Parametric Distribution Assignment in the Development of Injury Risk Functions from Biochemical Data

2004-03-08
2004-01-0317
Biomechanical data are often assumed to be doubly censored. In this paper, this assumption is evaluated critically for several previously published sets of data. Injury risk functions are compared using simple logistic regression and using survival analysis with 1) the assumption of doubly censored data and 2) the assumption of right-censored (uninjured specimens) and uncensored (injured) data. It is shown that the injury risk functions that result from these differing assumptions are not similar and that some experiments will require a preliminary assessment of data censoring prior to finalizing the experimental design. Some types of data are obviously doubly censored (e.g., chest deflection as a predictor of rib fracture risk), but many types are not left censored since injury is a force-limiting phenomenon (e.g., axial force as a predictor of tibia fracture). Guidelines for determining the censoring for various types of experiment are presented.
Technical Paper

Analytical Model for Investigating Low-Speed Sideswipe Collisions

2004-03-08
2004-01-1185
Vehicle dynamics in sideswipe collisions are markedly different from other types of collisions. Sideswipe collisions are characterized by prolonged sliding contact, often with very little structural deformation. An analytical model was developed to investigate the vehicle dynamics of sideswipe collisions. The vehicles were modeled as rigid bodies, and lateral interaction between the vehicles was modeled with a linear elastic spring. This linear spring was meant to represent the combined lateral stiffness of both vehicles before significant crush develops. Longitudinal interaction between the vehicles was modeled as frictional contact. In order to validate the model, seven (7) low speed (3 - 10 kph), shallow angle (15°) sideswipe collisions were staged with instrumented vehicles. These sideswipe collisions were characterized by long contact durations (∼ 1 s) and low accelerations (< 0.4 g's). The experimental collisions were also simulated with EDSMAC.
Technical Paper

Experiments for Establishing Pedestrian-Impact Lower Limb Injury Criteria

2003-03-03
2003-01-0895
Previous lateral knee bending and shear tests have reported knee joint failure moments close to failure bending moments for the tibia and femur. Eight tibias, eight femurs and three knee joints were tested in lateral bending and two knee joints were tested in lateral shear. Seven previous studies on femur bending, five previous studies on tibia bending, two previous studies on knee joint bending, and one on shear were reviewed and compared with the current tests. All knee joint failures in the current study were either epiphysis fractures of the femur or soft tissue failures. The current study reports an average lateral failure bending moment for the knee joint (134 Nm SD 7) that is dramatically lower than that reported in the literature (284-351 Nm), that reported in the current study for the tibia (291 Nm SD 69) and for femur (382 Nm SD 103).
Technical Paper

The Effects of Axial Preload and Dorsiflexion on the Tolerance of the Ankle/Subtalar Joint to Dynamic Inversion and Eversion

2002-11-11
2002-22-0013
Forced inversion or eversion of the foot is considered a common mechanism of ankle injury in vehicle crashes. The objective of this study was to model empirically the injury tolerance of the human ankle/subtalar joint to dynamic inversion and eversion under three different loading conditions: neutral flexion with no axial preload, neutral flexion with 2 kN axial preload, and 30° of dorsiflexion with 2 kN axial preload. 44 tests were conducted on cadaveric lower limbs, with injury occurring in 30 specimens. Common injuries included malleolar fractures, osteochondral fractures of the talus, fractures of the lateral process of the talus, and collateral ligament tears, depending on the loading configuration. The time of injury was determined either by the peak ankle moment or by a sudden drop in ankle moment that was accompanied by a burst of acoustic emission. Characteristic moment-angle curves to injury were generated for each loading configuration.
Technical Paper

Methodology for Measuring Tibial and Fibular Loads in a Cadaver

2002-03-04
2002-01-0682
Crash test dummies rely on biomechanical data from cadaver studies to biofidelically reproduce loading and predict injury. Unfortunately, it is difficult to obtain equivalent measurements of leg loading in a dummy and a cadaver, particularly for bending moments. A methodology is presented here to implant load cells in the tibia and fibula while minimally altering the functional anatomy of the two bones. The location and orientation of the load cells can be measured in all six degrees of freedom from post-test radiographs. Equations are given to transform tibial and fibular load cell measurements from a cadaver or dummy to a common leg coordinate frame so that test data can be meaningfully compared.
Technical Paper

THE EFFECT OF ACTIVE MUSCLE TENSION ON THE AXIAL INJURY TOLERANCE OF THE HUMAN FOOT/ANKLE COMPLEX

2001-06-04
2001-06-0074
Axial loading of the foot/ankle complex is an important injury mechanism in vehicular trauma that is responsible for severe injuries such as calcaneal and tibia pilon fractures. Axial loading may be applied to the leg externally, by the toepan and/or pedals, as well as internally, by active muscle tension applied through the Achilles tendon during pre-impact bracing. In order to evaluate the effect of active muscle tension on the injury tolerance of the foot/ankle complex, blunt axial impact tests were performed on 44 isolated lower legs with and without experimentally simulated Achilles tension. The primary fracture mode was calcaneal fracture in both groups, but tibia pilon fractures occurred more frequently with the addition of Achilles tension. Acoustic emission demonstrated that fracture initiated at the time of peak local axial force.
Technical Paper

The Role of Axial Loading in Malleolar Fractures

2000-03-06
2000-01-0155
Though rotation is thought to be the most common mechanism of foot and ankle injury in both automobile crashes and in everyday life, axial impact loading is considered responsible for most severe lower extremity injuries. In this study, dynamic axial impact tests were conducted on 92 isolated human lower limbs. The test apparatus delivered the impact via a pendulum-driven plate which intruded longitudinally to simulate the motion of the toepan in an automobile crash. Magneto-hydrodynamic (MHD) angular rate sensors fixed to the limbs measured ankle rotations during the impact event. Malleolar or fibula fractures, which are commonly considered to be caused by excessive ankle rotation, were present in 38% (12 out of 32) of the injured specimens. Ankle rotations in these tests were always within 10° of neutral at the time of peak axial load and seldom exceeded failure boundaries reported in the literature at any point during the impact event.
X