Refine Your Search

Search Results

Viewing 1 to 5 of 5
Journal Article

Towards a Cyber Assurance Testbed for Heavy Vehicle Electronic Controls

2016-09-27
2016-01-8142
Cyber assurance of heavy trucks is a major concern with new designs as well as with supporting legacy systems. Many cyber security experts and analysts are used to working with traditional information technology (IT) networks and are familiar with a set of technologies that may not be directly useful in the commercial vehicle sector. To help connect security researchers to heavy trucks, a remotely accessible testbed has been prototyped for experimentation with security methodologies and techniques to evaluate and improve on existing technologies, as well as developing domain-specific technologies. The testbed relies on embedded Linux-based node controllers that can simulate the sensor inputs to various heavy vehicle electronic control units (ECUs). The node controller also monitors and affects the flow of network information between the ECUs and the vehicle communications backbone.
Technical Paper

Recovery of Partial Caterpillar Snapshot Event Data Resulting from Power Loss

2016-04-05
2016-01-1493
Recovery of snapshot data recorded by Caterpillar engine control modules (ECMs) using Caterpillar Electronic Technician (CatET) software requires a complete snapshot record that contains information gathered both before and after an event. However, if an event is set and a crash ensues, or a crash creates an event, then it is possible for the ECM to lose power and not complete the recording. As such, the data may not be recoverable with CatET maintenance software. An examination of the J1708 network traffic reveals the snapshot data does exist and is recoverable. A motivational case study of a crash test between a Caterpillar powered school bus and a parked transit bus is presented to establish the hypothesis. Subsequently, a digital forensic recovery algorithm is detailed as it is implemented in the Synercon Technologies Forensic Link Adapter (FLA).
Technical Paper

Extracting Event Data from Memory Chips within a Detroit Diesel DDEC V

2015-04-14
2015-01-1450
The proper investigation of crashes involving commercial vehicles is critical for fairly assessing liability and damages, if they exist. In addition to traditional physics based approaches, the digital records stored within heavy vehicle electronic control modules (ECMs) are useful in determining the events leading to a crash. Traditional methods of extracting digital data use proprietary diagnostic and maintenance software and require a functioning ECM. However, some crashes induce damage that renders the ECM inoperable, even though it may still contain data. As such, the objective of this research is to examine the digital record in an ECM and understand its meaning. The research was performed on a Detroit Diesel DDEC V engine control module. The data extracted from the flash memory chips include: Last Stop Record, two Hard Brake events, and the Daily Engine Usage Log. The procedure of extracting and reading the memory chips is explained.
Journal Article

On the Digital Forensics of Heavy Truck Electronic Control Modules

2014-04-01
2014-01-0495
Concepts of forensic soundness as they are currently understood in the field of digital forensics are related to the digital data on heavy vehicle electronic control modules (ECMs). An assessment for forensic soundness addresses: 1) the integrity of the data, 2) the meaning of the data, 3) the processes for detecting or predicting errors, 4) transparency of the operation, and 5) the expertise of the practitioners. The integrity of the data can be verified using cryptographic hash functions. Interpreting and understanding the meaning of the data is based on standards or manufacturer software. Comparison of interpreted ECM data to external reference measurements is reviewed from the current literature. Meaning is also extracted from interpreting hexadecimal data based on the J1939 and J1587 standards. Error detection and mitigation strategies are discussed in the form of sensor simulators to eliminate artificial fault codes.
Journal Article

Numerical Investigation of Buoyancy-Driven Flow in a Simplified Underhood with Open Enclosure

2013-04-08
2013-01-0842
Numerical results are presented for simulating buoyancy driven flow in a simplified full-scale underhood with open enclosure in automobile. The flow condition is set up in such a way that it mimics the underhood soak condition, when the vehicle is parked in a windbreak with power shut-down after enduring high thermal loads due to performing a sequence of operating conditions, such as highway driving and trailer-grade loads in a hot ambient environment. The experimental underhood geometry, although simplified, consists of the essential components in a typical automobile underhood undergoing the buoyancy-driven flow condition. It includes an open enclosure which has openings to the surrounding environment from the ground and through the top hood gap, an engine block and two exhaust cylinders mounted along the sides of the engine block. The calculated temperature and velocity were compared with the measured data at different locations near and away from the hot exhaust plumes.
X