Refine Your Search

Search Results

Author:
Viewing 1 to 4 of 4
Technical Paper

Vehicle Glass Design Optimization Using a CFD/SEA Model

2007-05-15
2007-01-2306
A new methodology to predict vehicle interior wind noise using CFD results has been developed. The CFD simulation replaces wind tunnel testing for providing flow field information around vehicle greenhouse. A loadcase model based on the CFD results is used to excite an SEA vehicle model. This new approach has been demonstrated on a production vehicle with success for the frequency range of 250-10K Hz. The CAE prediction of interior wind noise agrees within 0.2 sones from wind tunnel testing. The model has been used to evaluate wind noise performance with different door glass design parameters. A glass thickness change from 3.8 mm to 4.8 mm results in 1.1 sones improvement, which agrees well to 1.4 sones improvement from testing. Laminated glass with about 3 times higher damping results in 2.5 sones improvement. This methodology using CFD results can be used in the early stage of product development to impact designs.
Technical Paper

Vehicle Wind Noise Analysis Using a SEA Model with Measured Source Levels

2001-04-30
2001-01-1629
A series of tests have been performed on a production vehicle to determine the characteristics of the external turbulent flow field in wind tunnel and road conditions. Empirical formulas are developed to use the measured data as source levels for a Statistical Energy Analysis (SEA) model of the vehicle structural and acoustical responses. Exterior turbulent flow and acoustical subsystems are used to receive power from the source excitations. This allows for both the magnitudes and wavelengths of the exterior excitations to be taken into account - a necessary condition for consistently accurate results. Comparisons of measured and calculated interior sound levels show good correlation.
Technical Paper

Integration of SEA Tire Model with Vehicle Model

1999-05-17
1999-01-1700
Statistical energy analysis (SEA) has recently emerged as an effective tool for design assessment in the automotive industry. Automotive OEM companies develop vehicle models to aid design of body and chassis systems. The tire and wheel suppliers develop and supply component models to OEM companies in the engineering stage. In the model development process, some information on the vehicle side or component side is necessary for model development and correlation. A suitable termination representation of the vehicle characteristics on the tire/wheel model is required. This termination should account for the dissipation of energy on vehicle body and chassis side, otherwise the component model will overestimate the vibration responses and energy levels. On the vehicle model side, a representative simplified tire/wheel model may be sufficient for full vehicle road noise simulation.
Technical Paper

Experimental Assessment of Wind Noise Contributors to Interior Noise

1997-05-20
971922
Wind noise reaches the interior of a vehicle through a variety of mechanisms including: aerodynamic excitation of vibration and reradiation from the greenhouse surfaces; acoustic transmission through door seals including gaps and glass edge leaks, and due to airborne transmission of noise generated by wind interaction with body panels. This paper presents experimental results that quantify contributions to interior noise from individual greenhouse surfaces and from airborne sources on the underbody. The measurements were carried out on a production vehicle in a wind tunnel. Greenhouse surfaces, in addition to the driver window are important contributors to interior noise along with airborne transmission of noise generated due to the flow over and through the vehicle underbody.
X