Refine Your Search

Topic

Search Results

Viewing 1 to 20 of 20
Journal Article

A Hybrid Acoustic Model for Composite Materials Composed of Fibers and High Surface Area Particles

2021-08-31
2021-01-1127
High surface area particles have drawn attention in the context of noise control due to their good sound absorption performance at low frequencies, which is an advantage compared with more traditional materials. That observation suggests that there is a good potential to use these particles in various scenarios, especially where low frequency noise is the main concern. To facilitate their application, composite materials are formed by dispersing particles within a fiber matrix, thus giving more flexibility in positioning those particles. In this work, a hybrid model that combines a model for limp porous materials and a model of high surface area particles is proposed to describe the acoustic performance of such composites. Two-microphone standing wave tube test results for several types of composites with different thickness, basis weight, and particle concentration are provided.
Journal Article

FE Simulation of Split in Fundamental Air-Cavity Mode of Loaded Tires: Comparison with Empirical Results

2021-08-31
2021-01-1064
Tire/road noise has become a significant issue in the automotive industry, especially for electric vehicles. Among the various tire/road noise sources, the air-cavity mode can amplify the forces transmitted from the tire to the suspension system causing noticeable cabin noise near 200 Hz. Furthermore, when the tire is deformed by loading, the fundamental air-cavity mode separates into two acoustic modes, a fore-aft mode and vertical mode due to the break in geometrical symmetry. This is important because the two components of the split mode can increase force levels at the hub by interacting with neighboring structural modes, thus resulting in increased interior noise levels. In this research, finite element simulations of five commercial tires at rated load were performed with a view to identifying the frequency split and its interaction with structural resonances. These results have been compared with previously obtained empirical results.
Technical Paper

The Identification of Minimum Weight Sound Packages That Meet Specified Vehicle Interior Sound Pressure Levels

2019-06-05
2019-01-1504
A vehicle’s fuel mileage is directly related to its CO2 emissions, which have a negative impact on the environment. This negative vehicle attribute can, of course, be mitigated by increasing the vehicle’s fuel mileage beyond current levels: the reduction of vehicle weight is one of the options automobile manufacturers can employ to meet that goal. Similarly, an electric vehicles range can be increased by reducing the vehicle’s weight. Therefore, the minimization of the weight of vehicle sound packages while maintaining their acoustical performance has a positive impact on the environment as well as on vehicle efficiency. In this research, a simple model of a vehicle front-of-dash sound package which consists of a limp porous layer placed in series with a flexible microperforated panel is considered.
Technical Paper

The Application of Acoustic Radiation Modes to Engine Oil Pan Design

2017-06-05
2017-01-1844
In modern engine design, downsizing and reducing weight while still providing an increased amount of power has been a general trend in recent decades. Traditionally, an engine design with superior NVH performance usually comes with a heavier, thus sturdier structure. Therefore, modern engine design requires that NVH be considered in the very early design stage to avoid modifications of engine structure at the last minute, when very few changes can be made. NVH design optimization of engine components has become more practical due to the development of computer software and hardware. However, there is still a need for smarter algorithms to draw a direct relationship between the design and the radiated sound power. At the moment, techniques based on modal acoustic transfer vectors (MATVs) have gained popularity in design optimization for their good performance in sound pressure prediction.
Technical Paper

A Desktop Procedure for Measuring the Transmission Loss of Automotive Door Seals

2017-06-05
2017-01-1760
Due the increasing concern with the acoustic environment within automotive vehicles, there is an interest in measuring the acoustical properties of automotive door seals. These systems play an important role in blocking external noise sources, such as aerodynamic noise and tire noise, from entering the passenger compartment. Thus, it is important to be able to conveniently measure their acoustic performance. Previous methods of measuring the ability of seals to block sound required the use of either a reverberation chamber, or a wind tunnel with a special purpose chamber attached to it. That is, these methods required the use of large and expensive facilities. A simpler and more economical desktop procedure is thus needed to allow easy and fast acoustic measurement of automotive door seals.
Journal Article

The Application of Singular Value Decomposition to Determine the Sources of Far Field Diesel Engine Noise

2013-05-13
2013-01-1974
The identification of the dominant noise sources in diesel engines and the assessment of their contribution to far-field noise is a process that can involve both fired and motored testing. In the present work, the cross-spectral densities of signals from cylinder pressure transducers, accelerometers mounted on the engine surface, and microphones (in the near and far fields), were used to identify dominant noise sources and estimate the transfer paths from the various “inputs” (i.e., the cylinder pressures, the accelerometers and the near field microphones) to the far field microphones. The method is based on singular value decomposition of the input cross-spectral matrix to relate the input measurements to independent virtual sources. The frequencies at which a particular input is strongly affected by an independent source are highlighted, and with knowledge of transducer locations, inferences can be drawn as to possible noise source mechanisms.
Technical Paper

Influence of Tire Size and Shape on Sound Radiation from a Tire in the Mid-Frequency Region

2007-05-15
2007-01-2251
In this research, the influence of tire size and shape on sound radiation in the mid-frequency region was studied. First, the relationship between the structural wave propagation characteristics of a tire excited at one point and its sound radiation was identified by using FE and BE analyses. Then, by using that relationship, the effect of modifying a tire's aspect ratio, width and wheel diameter on its sound radiation between 300 Hz and 800 Hz was investigated. Finally, an optimization of the sound radiation was performed by modification of the tire structure and shape. It was found that most of a tire's structural vibration does not contribute to sound radiation. In particular, the effective radiation was found to occur at the frequencies where low wave number components of the longitudinal wave and the flexural wave first appear.
Technical Paper

Assessment of Absorbers in Normal-Incidence Four- Microphone Transmission-Loss Systems to Measure Effectiveness of Materials in Lateral-Flow Configurations of Filled or Partially Filled Cavities

2007-05-15
2007-01-2190
The four-microphone standing wave tube system has proven useful for measuring the absorption and transmission loss of various fibrous and non-fibrous absorbers. The system is fast, repeatable, accurate and compact. This paper discusses the advantages of the four-microphone system for measuring the transmission loss in lateral-flow absorber systems. The original four-microphone round impedance tube system and the migration to a four-microphone square tube system are discussed. The four-microphone square tube system allows effective study of filled and partially filled cavities.
Technical Paper

Sound Radiation Control Resulting from Tire Structural Vibration

2005-05-16
2005-01-2521
The objective here was to study the control of sound radiation resulting from the structural vibration of a tire excited at one point. First, the tire was modeled as an orthotropic shell by using finite elements and the effect of various tire material parameters on structural wave propagation and the associated sound radiation was estimated. The parameters that were effective at controlling structural wave propagation were then identified. In addition, the radiation field characteristics in the space surrounding a tire placed on a rigid ground were analyzed by using radiation mode analysis. Based on these analyses, a strategy for reducing the radiated sound levels by modifying the tire parameters from a base set was determined. An improved set of material parameters was identified that resulted in reduced sound radiation within a specified target frequency region.
Technical Paper

Numerical Modeling of the Damping Effect of Fibrous Acoustical Treatments

2001-04-30
2001-01-1462
The damping effect that is observed when a fibrous acoustical treatment is applied to a thin metal panel typical of automotive structures has been modeled by using three independent techniques. In the first two methods the fibrous treatment was modeled by using the limp frame formulation proposed by Bolton et al., while the third method makes use of a general poro-elastic model based on the Biot theory. All three methods have been found to provide consistent predictions that are in excellent agreement with one another. An examination of the numerical results shows that the structural damping effect results primarily from the suppression of the nearfield acoustical motion within the fibrous treatment, that motion being closely coupled with the vibration of the base panel. The observed damping effect is similar in magnitude to that provided by constrained layer dampers having the same mass per unit area as the fibrous layer.
Technical Paper

Visualization techniques to identify and quantify sources and paths of exterior noise radiated from stationary and nonstationary vehicles

2000-06-12
2000-05-0326
In recent years, Nearfield Acoustical Holography (NAH) has been used to identify stationary vehicle exterior noise sources. However that application has usually been limited to individual components. Since powertrain noise sources are hidden within the engine compartment, it is difficult to use NAH to identify those sources and the associated partial field that combine to create the complete exterior noise field of a motor vehicle. Integrated Nearfield Acoustical Holography (INAH) has been developed to address these concerns: it is described here. The procedure entails sensing the sources inside the engine compartment by using an array of reference microphones, and then calculating the associated partial radiation fields by using NAH. In the second part of this paper, the use of farfield arrays is considered. Several array techniques have previously been applied to identify noise sources on moving vehicles.
Technical Paper

Transfer Matrix Approach to the Estimation of the Fundamental Acoustical Properties of Noise Control Materials

1999-05-17
1999-01-1667
A new method for evaluating the acoustical properties of porous materials is described here. To implement the procedure, a two-microphone standing wave tube was modified to include: a new sample holder; a section that accommodated a second pair of microphones downstream of the sample holder; and an approximately anechoic termination. A four-point sound pressure method was then used to estimate the two-by-two transfer matrix of the material. The transfer matrix can then be used to determine the wave number and characteristic impedance of the material. The procedure has been used to estimate the acoustical properties of two glass fiber materials.
Technical Paper

Development of a New Sound Transmission Test for Automotive Sealant Materials

1997-05-20
971896
A new laboratory method has been developed to evaluate the acoustical properties of expandable and other automotive sealants. These materials are used to reduce wind, road, and powertrain noise transmission into passenger compartments. In the new method, ASTM E 1050 absorption measurement equipment is used along with a new sample holder, a downstream microphone holder (providing two additional microphone locations) and an anechoic termination. These additions permit measurement of normal incidence transmission loss as well as absorption. It is intended to encourage adoption of this method as a standard way of quantifying the acoustical performance of sealants and sealing composites in automotive noise control applications.
Technical Paper

Elastic Porous Materials for Sound Absorption and Transmission Control

1997-05-20
971878
This article begins with a discussion of the general types of porous materials, i.e., rigid, limp, and elastic, and of their general physical properties. The macroscopic properties (e.g., flow resistivity, porosity, tortuosity, etc.) that control the acoustical behavior of each type of porous material are then defined and discussed, as are methods for their measurement. The acoustical characterization of a porous medium is considered next, followed by a discussion of modeling of porous materials with particular reference to elastic porous materials such as foams. The special character of elastic porous materials are illustrated through experimental and computational examples involving sound absorption and sound transmission. In particular, the importance of apparently small details of foam layer boundary conditions is emphasized. Finally, foam finite elements that are capable of predicting the behavior of finite-sized noise control treatments having realistic shapes are discussed.
Technical Paper

Two-Microphone Measurements of the Acoustical Properties of SAE and ISO Passby Surfaces in the Presence of Wind and Temperature Gradients

1997-05-20
971988
It has been noted that there are consistent differences between sideline sound levels measured on the two track types used for standardized motor vehicle passby testing: i.e., ISO and SAE surfaces. When the two-microphone transfer function method was first used in conjunction with a two parameter ground model to characterize the acoustical properties of these asphalt surfaces it was found that there were significant acoustical differences between the ISO and SAE surfaces. However, it was also noted that environmental conditions, e.g., wind and temperature gradients, affected the estimates of surface properties obtained by using that method. In the present work, a ray tracing algorithm has been used to model the effects of environmental refraction on short range propagation over asphalt, and a physically-based single parameter ground model has been used to characterize the asphalt surfaces.
Technical Paper

The Use of Nearfield Acoustical Holography (NAH) and Partial Field Decomposition to Identify and Quantify the Sources of Exterior Noise Radiated from a Vehicle

1997-05-20
972053
Since powertrain noise sources are usually “hidden” within the engine compartment, it is difficult to use NAH to identify those sources and the associated partial radiation fields that together create the exterior noise field of a motor vehicle. Integrated Nearfield Acoustical Holography (INAH) has been developed to address this concern. INAH represents a combination of NAH, reference microphone selection procedures, and coherence techniques. The procedure entails sensing the sources inside the engine compartment by using an array of reference microphones, and then calculating the associated partial radiation fields by using NAH. A key factor in the success of this procedure is the selection of a good reference microphone sub-set. A selection procedure has been developed by combining condition number and coherence analyses. The partial field determination problem has been approached by using both partial coherence and Singular Value Decomposition (SVD) procedures.
Technical Paper

A Model Study of How Tire Construction and Materials Affect Vibration-Radiated Noise

1997-05-20
972049
A simple mathematical model was developed and experimentally validated to evaluate how the materials and construction of an automobile tire affect its vibration-radiated noise performance. The mathematical model uses Statistical Energy Analysis (SEA) with modal joint acceptance formulations for wavespeed and radiation efficiency of orthotropically-stiffened and pressurized cylindrical shells. Experimental validation of the model included wavenumber decomposition to determine the dispersion characteristics of an inflated, non-rolling tire in the laboratory. The model is used to conduct a preliminary study into how the various tire constituent materials and construction parameters influence the vibration-radiated noise performance.
Technical Paper

Layered Fibrous Treatments for a Sound Absorption and Sound Transmission

1997-05-20
972064
In this paper, experimental evidence will be presented to demonstrate that unstiffened, low density fibrous materials are “limp”: i.e., their in vacuo bulk stiffness is very small compared to that of air with the result that the materials' solid phase motion becomes acoustically significant. Next, a new limp porous material model is presented. It is shown that this model may be used in conjunction with transfer matrices to predict the absorption or transmission loss of arbitrarily layered combinations of fibrous layers, permeable or impermeable membranes, and air spaces. The predictions of this model agree well with experimental measurements and so may be used to optimize sound absorption or transmission treatments.
Technical Paper

Correlation of Tire Intensity Levels and Passby Sound Pressure Levels

1995-05-01
951355
The object of the work reported here was to relate the acoustic intensity level measured near the contact patch of a driven tire on a passenger vehicle with the passby noise levels measured at a sideline microphone during coast and cruise conditions. Based on those measurements it was then possible to estimate the tire noise contribution to the passby level measured when the vehicle under test was accelerating. As part of this testing program, data was collected using five vehicles at fourteen passby sites in the United States: in excess of 800 data sets were obtained.
Technical Paper

The Use of the Wigner Distribution to Identify Wave-Types in Multi-Element Structures

1993-05-01
931286
In this paper it is shown that time-frequency analysis of a transient structural response may be used to identify the wave-types carrying significant energy through a multi-element structure. The identification of various wave-types is possible since each is characterized by its own dispersion relation, with the result that each wave-type may be associated with characteristic features in the time-frequency domain representation of a structural response. For multi-element structures, propagating energy can be converted from one wave-type to another at the junction of the elements. Consequently, for those structures, the characteristic features in the time-frequency domain consist of the superposition of features associated with propagation in each element. In the work described here, the Wigner Distribution has been used to obtain time-frequency domain representations of structural transient responses.
X