Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Development of a Featureless Free-Motion Headform

1991-10-01
912909
The National Highway Traffic Safety Administration (NHTSA) is currently conducting research at the Vehicle Research and Test Center (VRTC) aimed at reducing the number of serious and fatal head injuries due to impact with vehicle upper interior structures. A modified Hybrid III dummy head is currently used to test head injury potential from impacts with vehicle upper interior structures. This headform is propelled into vehicle upper interior structures with the front of the head facing the structure. Head impacts with A-pillars, side roof rails, and B-pillars may occur without the vehicle occupant facing directly into the structure. Since this is the case, it was decided that a featureless free-motion headform should be developed. This headform would not give the appearance of a forehead impacting the side structures of the vehicle. This paper will present the design, development, and testing of a featureless free-motion headform.
Journal Article

Development of a Vehicle Model/Simulation Evaluation Tool

2008-04-14
2008-01-0778
As part of the evaluation of vehicle simulation models, a vehicle dynamics engineer typically desires to compare simulation results to test data from actual vehicles and/or results from known, or higher fidelity simulations. Depending on the type of model, several types of tests and/or maneuvers may need to be compared. For military vehicles, there is the additional requirement to run specific types of maneuvers for vehicle model evaluations to ensure that the vehicle complies with procurement requirements. A thorough evaluation will run two different categories of tests/maneuvers. The first category consists of laboratory type tests that include weight distribution, kinematics and compliance, steering ratio, and other static measures. The second category consists of dynamic maneuvers that include handling, drive train, braking, ride, and obstacle types. In this paper, a process for proper evaluation of vehicle simulation models is presented.
Technical Paper

Results from NHTSA's Experimental Examination of Selected Maneuvers that may Induce On-Road Untripped, Light Vehicle Rollover

2001-03-05
2001-01-0131
This paper summarizes the results of test maneuvers devised to measure on-road, untripped, rollover propensity. Complete findings from this research are contained in [1]. Twelve test vehicles, representing a wide range of vehicle types and classes were used. Three vehicles from each of four categories: passenger cars, light trucks, vans, and sport utility vehicles, were tested. The vehicles were tested with vehicle characterization and untripped rollover propensity maneuvers. The vehicle characterization maneuvers were designed to determine fundamental vehicle handling properties while the untripped rollover propensity maneuvers were designed to produce two-wheel lift for vehicles with relatively higher rollover propensity potential. The vehicle characterization maneuvers were Pulse Steer, Sinusoidal Sweep, Slowly Increasing Steer, and Slowly Increasing Speed. The rollover propensity maneuvers were J-Turn, J-Turn with Pulse Braking, Fishhook #1 and #2, and Resonant Steer.
Technical Paper

Assessment of Dynamic Testing Environment of Child Restraint Systems

1993-11-07
933134
This paper summarizes the results of research conducted by the National Highway Traffic Safety Administration (NHTSA) to determine how changing vehicle design parameters influence child restraint performance. Initial research consisted of surveying late-model vehicles' interior design characteristics as they pertain to child restraint systems. The next step involved dynamic evaluation of booster seats with respect to injury/excursion criteria measured on child test dummies under conditions which illustrated the changing vehicle design characteristics. Belt-positioning booster seat tests were conducted to evaluate the effect of belt type (lap/shoulder belt vs lap only belt) on seat performance. Differences in small-shield booster behavior when used with lap only belt or laplshoulder belt combinations were established in another series of tests. Another study demonstrated how varying seat back rigidity changed small-shield booster test results.
Technical Paper

Improving Steering Feel for the National Advanced Driving Simulator

1997-02-24
970567
The National Highway Traffic Safety Administration's Vehicle Research and Test Center (VRTC) plans to evolve the state-of-the-art of steering system modeling for driving simulators with the ultimate goal being the development of a high fidelity steering feel model for the National Advanced Driving Simulator (NADS). The VRTC plans on developing reliable research tools that can be used to determine the necessary features for a steering model that will provide good objective and subjective steering feel. This paper reviews past and continuing work conducted at the VRTC and provides a plan for future work that will achieve this goal.
Technical Paper

Methodology for Validating the National Advanced Driving Simulator's Vehicle Dynamics (NADSdyna)

1997-02-24
970562
This paper presents an overview of work performed by the National Highway Traffic Safety Administration's (NHTSA) Vehicle Research and Test Center (VRTC) to test, validate, and improve the planned National Advanced Driving Simulator's (NADS) vehicle dynamics simulation. This vehicle dynamics simulation, called NADSdyna, was developed by the University of Iowa's Center for Computer-Aided Design (CCAD) NADSdyna is based upon CCAD's general purpose, real-time, multi-body dynamics software, referred to as the Real-Time Recursive Dynamics (RTRD), supplemented by vehicle dynamics specific submodules VRTC has “beta tested” NADSdyna, making certain that the software both works as computer code and that it correctly models vehicle dynamics. This paper gives an overview of VRTC's beta test work with NADSdyna. The paper explains the methodology used by VRTC to validate NADSdyna.
Technical Paper

Analysis of Potential Road/Terrain Characterization Rating Metrics

2004-10-26
2004-01-2640
The U.S. Army uses the root mean square and power spectral density of elevation to characterize road/terrain (off-road) roughness for durability. This paper describes research aimed toward improving these metrics. The focus is on taking previously developed metrics and applying them to mathematically generated terrains to determine how each metric discerns the relative roughness of the terrains from a vehicle durability perspective. Multiple terrains for each roughness level were evaluated to determine the variability for each terrain rating metric. One method currently under consideration is running a relatively simple, yet vehicle class specific, model over a given terrain and using predicted vehicle response(s) to classify or characterize the terrain.
Technical Paper

Further Analysis of Potential Road/Terrain Characterization Rating Metrics

2005-11-01
2005-01-3562
The U.S. Army uses the root mean square and power spectral density of elevation to characterize road/terrain (off-road) roughness for durability. This paper describes research aimed toward improving these metrics. The focus is on taking previously developed metrics and applying them to mathematically generated terrains to determine how each metric discerns the relative roughness of the terrains from a vehicle durability perspective. Multiple terrains for each roughness level were evaluated to determine the variability for each terrain rating metric. One method currently under consideration is running a relatively simple, yet vehicle class specific, model over a given terrain and using predicted vehicle response(s) to classify or characterize the terrain.
Technical Paper

Analysis of Vehicle Response Data Measured During Severe Maneuvers

2000-05-15
2000-01-1644
During the past few years, the National Highway Traffic Safety Administration's (NHTSA) Vehicle Research and Test Center has generated a plethora of reliable vehicle test data during their efforts to study vehicle rollover propensity. This paper provides further analyses of a small selection of some of the data. The analyses provided here derive in part from the previous work, trying to answer some of the questions spawned by earlier analyses. The purpose of this paper is to introduce several new concepts to the study of vehicle roll stability and provide case studies using the results available from the NHTSA testing. Results from several severe maneuvers are studied in detail to gain understanding of vehicle response in these cases.
Technical Paper

Measured Vehicle Inertial Parameters-NHTSA’s Data Through November 1998

1999-03-01
1999-01-1336
This paper is primarily a printed listing of the National Highway Traffic Safety Administration’s (NHTSA) Light Vehicle Inertial Parameter Database. This database contains measured vehicle inertial parameters from SAE Paper 930897, “Measured Vehicle Inertial Parameters -NHTSA’s Data Through September 1992” (1), as well as parameters obtained by NHTSA since 1992. The proceeding paper contained 414 entries. This paper contains 82 new entries, for a total of 496. The majority of the entries contain complete vehicle inertial parameters, some of the entries contain tilt table results only, and some entries contain both inertia and tilt table results. This paper provides a brief discussion of the accuracy of inertial measurements. Also included are selected graphs of quantities listed in the database for some of the 1998 model year vehicles tested.
X