Refine Your Search

Search Results

Author:
Viewing 1 to 4 of 4
Technical Paper

Design of a Full-Scale Impact System for Analysis of Vehicle Pedestrian Collisions

2005-04-11
2005-01-1875
The complexity of vehicle-pedestrian collisions necessitates extensive validation of pedestrian computational models. While body components can be individually simulated, overall validation of human pedestrian models requires full-scale testing with post mortem human surrogates (PMHS). This paper presents the development of a full-scale pedestrian impact test plan and experimental design that will be used to perform PMHS tests to validate human pedestrian models. The test plan and experimental design is developed based on the analysis of a combination of literature review, multi-body modeling, and epidemiologic studies. The proposed system has proven effective in testing an anthropometrically correct rescue dummy in multiple instances. The success of these tests suggests the potential for success in a full-scale pedestrian impact test using a PMHS.
Technical Paper

Experimental Investigation of the Response of the Human Lower Limb to the Pedestrian Impact Loading Environment

2005-04-11
2005-01-1877
Three limbs were taken from post mortem human subjects and impacted on the lateral aspect by a free-flying (30 km/h) impactor below the knee joint. Tri-axial MHDs and tri-axial accelerometers were used to determine the kinematics of the limb; strain gages were used to measure surface strain on the tibia and femur; and acoustic sensors were used to identify the onset and timing of injury. This data set was analyzed to compute the response of the knee joint to a bumper impact. Post-test necropsy results showed that the primary injury mechanism in each case was complete avulsion of the Medial Collateral Ligament (MCL) and the Anterior Cruciate Ligament (ACL).
Technical Paper

Response of the Knee Joint to the Pedestrian Impact Loading Environment

2004-03-08
2004-01-1608
Isolated knee joints from Post Mortem Human Subjects (PMHS) were tested in dynamic lateral-medial valgus loading that replicated a vehicle-pedestrian impact at 40 km/h. Eight specimens were tested in 4-point bending (pure bending) and eight specimens were tested in 3-point bending in configurations chosen to apply varying proportions of moment and shear at the knee joint. The medial collateral ligament (MCL) was the only major load bearing knee structure that was injured in the experiments. Applied loads (bending moment and shear force) and knee response (bending angle and shear displacement) are reported in order to provide information for determination of injury thresholds and for the validation of computational models and mechanical legform impactors.
Technical Paper

Error Analysis of Curvature-Based Contour Measurement Devices

2000-03-06
2000-01-0054
Curvature-based contour measurement devices with discrete curvature measurement gauges are widely used for the measurement of dynamic thoracic contours in both dummy and cadaveric automobile sled testing. Such devices include the chestband used to determine local thoracic contours at several rib levels for evaluation of injury parameters in dummy and cadaveric subjects. The use of these devices involves integration of local curvatures to obtain position data, and often incorporates several approximations, including a quasi-continuous approximation of discrete measured curvatures. By comparing a reference and a calculated position profile, this study analyzes the error in local positions induced from several sources. The first source of error is the measurement of curvatures at discrete locations, typically with 2.5 - 5.0 cm curvature gauge spacing.
X