Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Power Transmission by Laser Beam from Lunar-Synchronous Satellites to a Lunar Rover

1992-08-03
929437
This study addresses the possibility of beaming laser power from synchronous lunar orbits (the L1 and L2 LaGrange points) to a manned long-range lunar rover. The rover and two versions of a satellite system (one powered by a nuclear reactor; the other by photovoltaics) are described in terms of their masses, geometry, power needs, mission and technological capabilities. Laser beam power is generated by a laser diode array in the satellite and converted to 30 kW of electrical power at the rover. Present technological capabilities, with some extrapolation to near future capabilities, are used in the descriptions. The advantages of the two satellite/rover systems over other such systems and over rovers with on-board power are discussed along with the possibility of enabling other missions.
Technical Paper

Power Beaming Providing a Space Power Infrastructure

1992-08-03
929350
This study, based on two levels of technology maturity, applies the power beaming concept to four planned satellite constellations. The analysis shows that with currently available technology, power beaming can provide mass savings to constellations in orbits ranging from low-Earth orbit to geosynchronous orbit. Two constellations, space surveillance and tracking system and space-based radar, can be supported with current technology. The other two constellations, space-based laser array and boost surveillance and tracking system, will require power and transmission system improvements before their breakeven specific mass is achieved. A doubling of SP-100 conversion efficiency from 10 to 20% would meet or exceed breakeven for these constellations.
X