Refine Your Search

Search Results

Author:
Viewing 1 to 2 of 2
Technical Paper

An Experimental Model of a Biological Life Support System with the Intra-system Mass Exchange Closed to a High Degree, Based on “Biological Combustion” of Dead-end Plant Residues

2003-07-07
2003-01-2417
This work concerns the model of a biological life support system consisting of higher plants, a unit of “biological combustion”, a physicochemical reactor, and 1/30 of a human. The cycling of the main biogenic elements of the system, water, and carbon dioxide was closed to a high degree (more than 95%). Experimental-theoretical analysis of the cycling processes in the system was based on the calculations of mass exchange rates dynamics and some stoichiometric equations. The model was designed for the study of mechanisms of material transformation and the directions of mass exchange processes in the artificial ecosystems.
Technical Paper

Simulation of Mass Fluxes in the MELISSA Microorganism Based Ecosystem

1993-07-01
932125
The MELISSA (Microbial Ecological Life Support System Alternative) project, conceived as a microorganism based ecosystem, is an early simplified model of a future biological life support system for manned space missions. The driving element is the recovery of edible biomass from waste, CO2 and minerals with direct use of light as a source of energy for photosynthesis. MELISSA is composed of four axenic compartments colonised by microorganisms and of a fifth compartment that is the crew on board the craft. This paper reports on the solution of mass balances over the entire MELISSA loop. The compartments within MELISSA are first analysed separately, each compartment being described by one or more stoichiometric equations derived from knowledge of the cells metabolic pathways. For each stoichiometric equation a key substrate entering a compartment is assumed to be completely exhausted at the outlet; process kinetics such as rates of biological reactions and mass transfer are ignored.
X