Refine Your Search

Search Results

Author:
Viewing 1 to 7 of 7
Journal Article

Surface Conductivity Measurement of Catalyst Materials by EUPS and Its Correlation to Catalyst Performance

2016-04-05
2016-01-0911
Commercial three way catalysts (TWC) are designed to eliminate HC, CO and NOx pollutants emitted from gasoline powered internal combustion engines. TWC have been optimized over many years to meet ever more stringent emission regulations. It has long been speculated that surface electrical conductivity may be a key parameter in controlling catalytic activity, however until now it has not been possible to reliably measure this physical parameter on a catalytic surface. In this study, the surface electrical conductivity of catalyst powders, such as Rh/ CeO1-x-ZrxO2, Rh/ZrO2 and Rh/Al2O3, were measured by EUPS (Extreme Ultraviolet excited Photoelectron Spectroscopy). Then the measured electrical conductivity was compared with catalyst performance from CO-NO and water gas shift reactions which are important for controlling automobile exhaust emissions from gasoline vehicles.
Technical Paper

Co-operative Control of Regenerative Braking using a Front Electronic Wedge Brake and a Rear Electronic Mechanical Brake Considering the Road Friction Characteristic

2012-09-17
2012-01-1798
In this study, a co-operative regenerative braking control algorithm was developed for an electric vehicle (EV) equipped with an electronic wedge brake (EWB) for its front wheels and an electronic mechanical brake (EMB) for its rear wheels. The co-operative regenerative braking control algorithm was designed considering the road friction characteristic to increase the recuperation energy while avoiding wheel lock. A powertrain model of an EV composed of a motor, and batteries and a MATLAB model of the control algorithm were also developed. They were linked to the CarSim model of the vehicle under study to develop an EV simulator. The EMB and EWB were modeled with an actuator, screw, and wedge to develop an EMB and EWB simulator. A co-simulator for an EV equipped with an EWB for the front wheels and an EMB for the rear wheels was fabricated, composed of the EV and the EMB and EWB simulator.
Technical Paper

Spray Characteristics of DME Blended Biodiesel Oil

2001-09-24
2001-01-3636
Spray characteristics of biodiesel oil was investigated as it can be applied to industrial combustion systems, including internal combustion engines. Shadowgraph methodology using Greenfield system was used to take some images of the spray and to measure droplet size. A high speed video camera was also used to take a picture of spray penetration and its angle. From the results, it shows that DME blended biodiesel oil has almost the same droplet size as conventional diesel oil, when the blended DME ratio is over 50% by weight. It is also shown that there exists optimum fuel injection pressure that has minimum droplet size when the ambient gas pressure is constant.
Technical Paper

The Prediction of Autoignition in a DME Direct Injection Diesel Engine

2000-06-19
2000-01-1827
The ignition delay under various temperature and pressure conditions considering volumetric change is investigated both by experiments and simulation to give some basic data of ignition delay for a DME DI diesel engine. The combustion process in a DME direct injected diesel engine was also observed to help understanding of the difference between DME combustion and that of a diesel fuel. For DME fuel, it was clear that the luminous flame duration is much shorter than that of diesel fuel. The calculated results of ignition delay for high equivalence(ϕ =0.4 in this study) showed good accord qualitatively to those of measured at wide range of temperature and pressure conditions investigated in this work. There exists the negative temperature coefficient region near the temperature of 800K. This study shows basic guideline for optimal injection timing for DME fueled compression ignition engines.
Technical Paper

Conversion of Nitric Oxide to Nitrogen Dioxide Using Hydrogen Peroxide

2000-06-19
2000-01-1931
Detailed chemical kinetic model of hydrogen peroxide (H2O2) into diesel exhaust gas has been executed to investigate its effect on the removal of nitric oxide(NO) by changing exhaust gas temperature and H2O2 addition amount. Flux analysis has also been done to clarify which reaction mainly affects NO-to-NO2 conversion. From the results of this study, it is shown that the optimal temperature condition to maximize the removal of NO exists near at 500K for OH addition condition, while that for H2O2 addition exists near at 800K. It is also shown that temperature window for the removal of NO becomes widened as the initial temperature of the exhaust gas increases, and NO-to-NO2 conversion rate decreases in proportion to the concentration of hydrocarbon(HC), although that of the total NOx remains the same level regardless of HC concentration. Finally, it is shown that HO2 + NO → NO2 + OH is mainly responsible for NO-to-NO2 conversion.
Technical Paper

Combustion Process Modeling using a Reduced Mechanism in an LPG Lean Burn SI Engine

1999-10-25
1999-01-3481
Flame propagation characteristics, in a heavy-duty type LPG lean burn SI engine, were investigated by simulation methodology, using the global one step and the ten step chemical kinetic reaction mechanisms, respectively. The swirl ratio and equivalence ratio were varied to investigate their effects on flame front speed. The effect of increased swirl intensity on flame speed was very minor at ranges of equivalence ratio of this study. Flame front shape, however, was affected by swirl intensity. Circular flame front formed for a higher swirl ratio, which is in a qualitative accordance with that of measurements. Comparison between calculation and measurements of flame propagation characteristics shows a good agreement for both the global one step and the ten step chemical kinetic model. This work concludes that the reduced chemical kinetic reactions, consisting of ten steps, is useful for flame propagation study in an LPG SI engine.
Technical Paper

Spectroscopic Investigation of the Combustion Process in an LPG Lean-burn SI Engine

1999-10-25
1999-01-3510
Band spectrum images for CH, OH and CHO were taken in a heavy duty type LPG lean-burn SI engine, to investigate the combustion process as it pertains to the pollutant formation process in the post flame region. Full spectra and band spectrum flame images were observed with a bottom view single cylinder research engine and two high speed cameras. NOx emissions were also measured for excess air ratios ranging from 1.0 to 1.6. A thermodynamic model, including the detailed chemical kinetic mechanism for LPG and NOx formation reactions, was developed to predict the major reaction species in the post flame region, and NOx emissions during the combustion process. The model qualitatively described the flame images for each band spectrum and could predict the measured NOx emissions very well.
X