Refine Your Search

Search Results

Author:
Viewing 1 to 4 of 4
Technical Paper

Role of Transverse Baffle Designs on Transient Three-Dimensional Liquid Slosh in a Partly-Filled Circular Tank

2005-11-01
2005-01-3594
Transient fluid slosh within a partly-filled tank could impose high stresses on the tank structure and affect the directional performance in an adverse manner. A three-dimensional nonlinear model of a partly filled circular cylindrical tank with and without baffles is formulated and analyzed to derive the pressure distribution over the wetted tank surface. The baffles and end caps are modeled with curved shapes in accordance with the current standard. The analyses are performed for 40% and 60% fill volumes and different types of baffles, including single-nozzle and multiple-orifice baffles, using the FLUENT software under time varying acceleration fields representing simultaneous braking and turning maneuvers. The pressure data are further analyzed to evaluate steady-state and transient slosh forces, load shifts along the longitudinal and lateral axes, and the roll, pitch and yaw moments imposed on the tank structure.
Technical Paper

Directional Dynamics of a Partly-Filled Tank Vehicle Under Braking and Steering

2000-12-04
2000-01-3477
Dynamic behavior of a partly-filled liquid cargo vehicle subject to simultaneous application of cornering and braking maneuvers is investigated through computer simulation. A three-dimensional quasi-dynamic model of a partly-filled tank of circular cross-section is developed and integrated into a comprehensive three-dimensional model of an articulated vehicle to study its directional response under varying steering and braking inputs, fill volumes and road surface friction. The liquid load movement encountered under combined steering and braking is expressed in terms of variations in the instantaneous c.g. coordinates and mass moments of inertia of the liquid bulk, assuming negligible influence of fundamental slosh frequency and viscous effects.
Technical Paper

Study of Occupant-Seat Models for Vibration Comfort Analysis of Automotive Seats

2000-10-03
2000-01-2688
The comfort assessments of automotive seats are attempted through development of seat-occupant models in order to minimize the participation of human subjects in such studies. A nonlinear model of a polyurethane foam (PUF) cushion and its support mechanism is developed through measurement of static and dynamic properties as functions of the seated load, and excitation frequencies and amplitudes. Nonlinear analytical models of the seat-occupant system are developed by integrating three different occupant models of different complexities with the cushion model. The analytical response characteristics of these models are derived under sinusoidal and random excitations considered representative of the automotive vibration environment. The vibration transmission properties of the seat are measured in the laboratory under harmonic and random excitations using 6 human subjects.
Technical Paper

Optimal Tank Geometry to Enhance Static Roll Stability of Partially Filled Tank Vehicles

1999-11-15
1999-01-3730
A generic tank cross-section is formulated to describe the geometry of currently used tanks in transportation of fuel oils and bulk liquids, and to explore optimal tank geometry for enhancement of roll stability limit of tank vehicle combinations. The tank periphery, composed of 8 circular arcs symmetric about the vertical axis, allows more design flexibility in view of the roll stability limits than the conventional tank shapes. A shape optimization problem is formulated to minimize the overturning moment imposed on the vehicle due to c.g. height of the liquid load, and the lateral and vertical movement of the liquid bulk within the partly filled tank. Different optimal tank cross-sections are proposed corresponding to varying fill conditions, while the total cross-sectional area, overall height and overall width are constrained to specified values.
X