Refine Your Search

Search Results

Technical Paper

An Insight Into Effect of Split Injection on Mixture Formation and Combustion of DI Gasoline Engines

2004-06-08
2004-01-1949
In the previous study of the authors, it was found that some benefits for the mixture preparation of DI gasoline engines can be offered by splitting the fuel injection, such as the phenomenon of high density liquid phase fuel piling up at the leading edge of the spray can be circumvented. In a further analysis, the vapor quantity in the “stable operating” range (equivalence ratio of vapor ϕv in a range of 0.7≤ϕv≤1.3) was significantly increased by the split injection compared to the single injection. In this work, the mechanism of the effect of the split injection on the mixture formation process was studied by combining the laser-sheet imaging, LIF-PIV and the LAS (Laser Absorption Scattering) technique. As a result, it is found that the spray-induced ambient air motion can help the formation of the more combustible mixture of the split injection whereas it played a minus role of diluting the spray by the single injection.
Technical Paper

Characterization of Mixture Formation Processes in DI Gasoline Engine Sprays with Split Injection Strategy via Laser Absorption and Scattering (LAS) Technique

2003-10-27
2003-01-3161
In order to investigate the effect of split injections on mixture formation processes in Direct Injection (DI) gasoline engine sprays, an experimental study was conducted applying the laser absorption and scattering (LAS) technique to the sprays using double pulse injections with various dwells and mass ratios. The effects of various dwells and mass ratios between the pulsed injections on the spatial concentration distributions in the spray, the penetration of vapor and liquid phases, and the mean equivalence ratios of the vapor phase and overall spray, were clarified. It was found that the phenomenon of high concentration liquid spray piling up at the leading edge of the spray is avoided by the double injections with enough dwell or appropriate mass ratio. The maximum penetration length of the spray significantly decreases, especially for the liquid phase with high concentration.
Technical Paper

Characterization of Mixture Formation Processes in D.I. Gasoline Sprays by the Laser Absorption Scattering (LAS) Technique - Effect of Injection Conditions

2003-05-19
2003-01-1811
Mixture formation processes play a vital role on the performance of a D.I. Gasoline engine. Quantitative measurement of liquid and vapor phase concentration distribution in a D.I. gasoline spray is very important in understanding the mixture formation processes. In this paper, an unique laser absorption scattering (LAS) technique was employed to investigate the mixture formation processes of a fuel spray injected by a D.I. gasoline injector into a high pressure and temperature constant volume vessel. P-xylene, which is quite suitable for the application of the LAS technique, was selected as the test fuel. The temporal variations of the concentration distribution of both the liquid and vapor phases in the spray were quantitatively clarified. Then the effects of injection pressure and quantity on the concentration distributions of both the liquid and vapor phases in the spray were analyzed.
Technical Paper

Ignition Delays of DME and Diesel Fuel Sprays Injected by a D.I. Diesel Injector

1999-10-25
1999-01-3600
Among the alternative fuels, dimethyl ether (DME), one of the oxygenated fuels, attracts attention as an alternative fuel for the Diesel engine since the properties of the DME are fitted to the Diesel engine combustion and the know-how development has been made of the mass production of the DME from a natural gas. In this study, experiments were performed of ignition characteristics of the DME and Diesel fuel sprays injected by a D.I. Diesel injector into a high-pressure, high-temperature vessel. The fuel injection was made by a Bosch type injection system. A schlieren optical system was adopted for visualizing the ignition process as well as the vaporization process of the DME and Diesel fuel sprays. The ignition delay was measured by using a photo-sensor which had a sensitivity in the wavelength range from visible to ultraviolet. Pressure and temperature of the ambient air and the oxygen concentration of the ambient air were changed as experimental parameters.
Technical Paper

Numerical and Experimental Analyses of the Injection Characteristics of Dimethyl Ether with a D. I. Diesel Injection System

1999-03-01
1999-01-1122
The fuel injection characteristics of Dimethyl Ether(DME) were calculated and compared with the calculated results of diesel fuel using a simulation model of an in-line diesel injection system in order to clarify the differences between the injection characteristics of the two fuels. Moreover, numerical analyses for the DME injection were performed while changing the fuel parameters and the injection system parameters in order to estimate the effects of these parameters on the fuel injection characteristics. The effects of some of these parameters were evaluated by experimental results conducted in a constant volume vessel. Furthermore, the spray tip penetration was calculated using the computed results of the injection pressure. As a result of this study, the injection characteristics of the DME fuel are basically confirmed. By the macroscopic analyses of these spray characteristics, the DME spray behavior in a combustion chamber can be estimated.
Technical Paper

Flame Propagation Characteristics in a Heterogeneous Concentration Distribution of a Fuel-Air Mixture

1998-10-19
982563
An experimental study was conducted to investigate the flame propagation characteristics in the presence of a heterogeneous concentration distribution of a fuel-air mixture in order to provide fundamental knowledge of the effects of gaseous mixture concentration heterogeneity on the combustion process. Different propane-air mixture distributions were produced by the reciprocating movements of a pair of perforated plates in a constant volume combustion chamber. The mean equivalence ratio of the fuel-air mixture was varied from 0.7 on the lean side to 1.6 on the rich side, the turbulence intensity in the combustion chamber was also varied at levels of 0.185 m/s, 0.130 m/s, 0.100 m/s, and 0.0 m/s. By an independent control of the mixture distribution and the turbulence intensity in the combustion chamber, the flame structure and flame propagation speed at various heterogeneous levels of the mixture distribution were investigated in detail.
Technical Paper

Characterization of Flows in the Sac Chamber and the Discharge Hole of a D.I. Diesel Injection Nozzle by Using a Transparent Model Nozzle

1997-10-01
972942
The internal flow of a diesel injection nozzle was studied by using transparent model nozzles to clarify the effects of the flows in the sac chamber and the discharge hole on the spray behaviors. The geometry of the model nozzle was scaled up 10 times the actual nozzle and the injection pressure for the model nozzle was adjusted so as to achieve a Reynolds number at the discharge hole which was the same as an actual nozzle. Aluminium oxide (Al2O3) tracers were used to visualize the flow patterns in the sac chamber. Sequential photographs of the internal flow and the issuing spray plume during the opening process of the needle valve were taken by a high-speed video camera. By locating the discharge hole on the upper side of the sac chamber, the turbulence intensity in the sac chamber increases and the spread angle of the spray plume becomes large.
Technical Paper

Effects of Mixture Heterogeneity on Flame Propagation in a Constant Volume Combustion Chamber

1997-10-01
972943
Although mixture formation is considered important in actual spark ignition engines, A full understanding of the combustion characteristics of a heterogeneous mixture has not yet been achieved. In this study, in order to clarify the effects of a heterogeneous concentration distribution of the fuel-air mixture on the flame propagation process, different degrees of heterogeneously distributed mixtures were created by the motion of a pair of perforated plates in a constant volume combustion chamber. The laser Rayleigh scattering method was applied for quantitative visualizations of these mixture distributions. To control the distribution of the mixture concentration and the turbulence intensity independently, the flow in the chamber and its turbulence intensity were also measured by a laser sheet method and the LDV technique.
Technical Paper

Three Dimensional Visualization for Calculated Distributions of Diesel Spray and Flame in the Combustion Chamber of a D.I. Diesel Engine

1997-10-01
972867
Three-Dimensional visualization technique based on volume rendering method has been developed in order to translate a calculated result of diesel combustion simulation into an realistically spray and flame image. This paper presents an overview of diesel combustion model which has been developed at Hiroshima University, a description of the three-dimensional visualization technique, and some examples of spray and flame image generated by this visualization technique.
Technical Paper

Simulation Study of Effects of Injection Rate Profile and Air Entrainment Characteristics on D.I. Diesel Combustion

1996-10-01
962059
A calculative investigation was performed in order to examine the effects of injection rate profile and air entrainment characteristics on exhaust emission using a phenomenological spray combustion model. The calculations were made of an engine with a bore of 114 mm and a stroke of 130 min while changing the injection rate profile and the air entrainment characteristics. As a result of the calculations, effective measures were found for simultaneous reduction of NOx and smoke emissions.
Technical Paper

Model Verification of the Evaporating Diesel Spray Distribution in the Combustion Chamber of a D.I. Diesel Engine

1996-10-01
962054
Evaporating diesel spray distributions in the combustion chamber of a direct injection diesel engine were calculated using a phenomenological simulation model, and the calculated results were described three dimensionally using a 3-D volume rendering application which has been developed by the authors. The evaporating diesel spray distributions in the combustion chamber were measured using a technique based on the extinction of ultraviolet (wavelength of 280nm) and visible (wavelength of 560nm) laser lights. The measured results were compared with the predicted spray distributions in order to verify the simulation model. The calculated results show reasonably good agreement with the experimental results, and the validity of this spray model as a practical computational tool for estimating diesel spray behavior is confirmed by this comparison.
Technical Paper

Experiments and Modeling on Spray Distributions in the Combustion Chamber of a Direct Injection Diesel Engine

1996-08-01
961820
Distributions of non-evaporating diesel sprays impinging on a simulated combustion chamber wall were observed from various directions while changing some of the experimental parameters, such as nozzle projection and top-clearance. High-speed photography was used in this study to examine the effects of these parameters on the spray distributions. Moreover, the spray distributions were predicted by using a spray model based on a multi-package model. The calculated distributions were displayed three-dimensionally using a volume rendering application developed by the authors. The predicted spray distributions were compared with the experimental results observed from various directions in order to evaluate the spray model.
Technical Paper

Planar Measurements of the Liquid Phase Temperature in Diesel Sprays Injected into High-Pressure and High-Temperature Environments

1996-05-01
961202
The two-dimensional distributions of the liquid phase temperatures in diesel sprays injected into high-pressure and high-temperature environments were measured using the laser-induced fluorescence technique. The liquid fuel (n-hexadecane) was doped with pyrene(C16H10). The fuel spray doped with pyrene was injected under a high-pressure of 3.1MPa and a high-Temperature of 773K. The evaporating diesel spray was excited by laser radiation at 266nm, and the resulting fluorescence was imaged by an intensified CCD camera. The fluorescence intensity ratios of the pyrene monomer and excimer emissions have temperature dependence, and were used to determine the liquid phase temperatures in the diesel sprays. The cross-sectional distribution of the liquid phase temperature was estimated from the fluorescence images by the temperature dependence of the intensity ratio.
Technical Paper

Influence of Mixture Stratification Patter non Combustion Characteristics in a Constant-Volume Combustion Chamber

1995-10-01
952412
A pancake-type constant-volume combustion chamber was used to investigate the combustion and NOx emission characteristics of propane-air and hydrogen-air mixtures under various charge stratification patterns, which were obtained by variations of the initial charge and injected mixture concentrations and the ignition spark timing. A planar laser-induced fluorescence from nitrogen dioxide as gas fuel tracer was applied to measure the mixture distribution in the test chamber. The second harmonic output of pulsed Nd; YAG laser was used as a light source for fluorescence excitation. The fluorescence images were corrected by a gated image-intensified CCD camera. The quantitative analysis of fuel concentration was made possible by the application of linearity between fluorescence intensity and NO2 concentration at low trace level.
Technical Paper

2-D Measurements of the Liquid Phase Temperature in Fuel Sprays

1995-02-01
950461
Cross-sectional distributions of the liquid phase temperatures in fuel sprays were measured using a laser-induced fluorescence technique. The liquid fuel (n-hexadecane or squalane) was doped with pyrene(C16H10). The fluorescence intensity ratios of the pyrene monomer and excimer emissions has temperature dependence, and were used to determine the liquid phase temperatures in the fuel sprays. The measurements were performed on two kinds of sprays. One was performed on pre-heated fuel sprays injected into surrounding gas at atmospheric conditions. The other was performed on fuel sprays exposed to hot gas flow. The spray was excited by laser radiation at 266nm, and the resulting fluorescence was imaged by an intensified CCD camera. The cross-sectional distribution of the liquid phase temperature was estimated from the fluorescence image by the temperature dependence of the intensity ratio.
Technical Paper

Three-Dimensional Spray Distributions in a Direct Injection Diesel Engine

1994-09-01
941693
Experiments and modeling of a spray impinged onto a cavity wall of a simulated piston were performed under simulated diesel engine conditions (pressure and density) at an ambient temperature. The diesel fuel was delivered from a Bosch-type injection pump to a single-hole nozzle, the hole being drilled in the same direction as the original five-hole nozzle. The fuel was injected into a high-pressure bomb in which an engine combustion chamber, composed of a piston, a cylinder head and a cylinder liner, was installed. Distributions of the spray impinged on the simulated combustion chamber were observed from various directions while changing some of the experimental parameters, such as combustion chamber shape, nozzle projection and top-clearance. High-speed photography was used in the constant volume bomb to examine the effect of these parameters on the spray distributions.
Technical Paper

PLIF Measurements of the Cyclic Variation of Mixture Concentration in a SI Engine

1994-03-01
940988
Planar laser-induced fluorescence (PLIF) technique was employed to perform the quantitative measurements of the cyclic variation of mixture concentration in the combustion chamber of a spark ignition (SI) engine. Nitrogen dioxide was used as the fluorescence tracer to simulate the fuel vapor. A Nd:YAG laser operated at its second harmonic wavelength was employed as the light source. The original engine was modified to introduce laser sheet light into the combustion chamber and the induced fluorescence was captured by a CCD camera fitted with a gated image intensifier. The measurements were done at the engine crank angles of 180° ∼ 300° ATDC with the engine speeds of 200 ∼ 400 rpm and the injection timings of -70 °, 50° and 100° ATDC. A theoretical analysis was made to describe the cyclically varying characteristics of the mixture concentration.
Technical Paper

Ignition and Flame Propagation of Spray Compound Mixture

1993-10-01
932711
The ignition and flame propagation processes of a propane-air mixture compounded with a kerosene spray were investigated in order to allow a better understanding of the multi-phase combustion process of the spray compound mixture in a direct injection stratified charge (DISC) engine. The ignition probability and the flame propagation velocity, as functions of the overall equivalence ratio, fraction of propane in the fuel, ignition energy and the Sauter mean diameter of the spray, were measured under atmospheric conditions. The development of the flame kernel and the propagating flame were observed by a high-speed video camera combined with a schlieren system. Adding small amounts of the kerosene spray to the lean propane-air mixture improved the ignition probability. However, the ignition probability depended strongly on the Sauter mean diameter and the ignition energy. Replacing the propane with the kerosene spray in a rich propane-air mixture increased the flame propagation velocity.
Technical Paper

Quantitative Imaging of the Fuel Concentration in a SI Engine with Laser Rayleigh Scattering

1993-10-01
932641
Quantitative imaging of the fuel concentration distribution was made in the combustion chamber of a propane-fueled spark ignition (SI) engine with the employment of laser-sheet-induced Rayleigh scattering technique for realizing the remote, nonintrusive and highly space- and time-resolved measurement. The original engine was modified to introduce YAG laser-induced sheet light into the combustion chamber and the scattered light was captured by a CCD camera fitted with a gated double-micro- channel plate image intensifier. The measurements were done at the crank angle of 270°ATDC in the combustion chamber of the engine motored at 200rpm with an air fuel ratio of 13 for various injection timing, injection direction and intake flow. The results show that with an appropriate matching of fuel injection timing, injection direction and intake flow, a stratified distribution of the fuel concentration can be realized.
Technical Paper

Approach to Low NOx and Smoke Emission Engines by Using Phenomenological Simulation

1993-03-01
930612
A phenomenological spray-combustion model of a D.I. Diesel engine was applied to study the engine parameters with potential for reducing NOx and smoke emissions. The spray-combustion model, first developed at the University of Hiroshima in 1976, has been sophisticated by incorporating new knowledge of diesel combustion. The model was verified using data from an experimental, single cylinder, D.I. diesel engine with a bore of 135mm and a stroke of 130mm. After the verification process, calculations were made under a wide range of the engine parameters, such as intake air temperature, intake air pressure, intake swirl ratio, nozzle hole diameter, injection pressure, air entrainment rate into the spray, and injection rate profile. These calculations estimated the effects of the engine parameters on NOx, smoke and specific fuel consumption. As a result of the calculations, an approach for the low NOx and smoke emission engine was found.
X