Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Flexible-Fuel System for Small Motorcycles

2009-11-03
2009-32-0044
A flexible-fuel system for small motorcycles has been developed that can utilize both gasoline, and ethanol as an alternative to fossil fuel. For practicality, we aimed to develop a system that uses a minimum of additional parts. As a method to make both ethanol and gasoline available with the system, a control algorithm that estimates the ethanol concentration by utilizing the output voltage of an OXYGEN SENSOR and selects the appropriate injection quantity is employed. Usually, in automotive flexible-fuel vehicles (FFV), sub-tanks are mounted to ensure engine startability in cold temperatures. However, in small motorcycles, limitations of mounting space must be addressed. In this system, by clarifying the control logic and determining the difficult cases for cold temperature starts due to high ethanol concentration, configuring the indicator to promote gasoline mixture when the start is difficult enabled the elimination of the sub-tanks.
Technical Paper

Study on low temperature oxidation of diesel particulate matters by oxygen storage component for the catalyzed diesel particulate filter

2007-07-23
2007-01-1919
Oxygen storage components (OSC) based on cerium (Ce) were investigated for their ability to reduce the oxidation temperature of diesel particulate matter (DPM). Among the materials investigated, a cerium-praseodymium (Ce-Pr) composite oxide provided the largest reduction in DPM oxidation temperature. Oxygen isotope tracer experiments revealed that oxygen released from the cerium oxidized the DPM at a lower temperature than the oxygen from the exhaust.
Technical Paper

The Effect of Ceria Content on the Performance of a NOx Trap

2003-03-03
2003-01-1160
A study was performed on a lean NOx trap in which the loading of a ceria-containing mixed oxide in the washcoat was varied. After a mild stabilization of the traps, the time required to purge the NOx trap generally increased with increasing amount of mixed oxide. The purge NOx release also increased with increasing mixed oxide level but was greatly diminished after thermal aging. The sulfur tolerance of the NOx trap improved as the mixed oxide content was increased from 0% to 37%. The sample with 0% mixed oxide was more difficult to desulfate than the other samples due to poor water-gas-shift capability. After thermal aging, the NOx reduction efficiency on a 60 second lean/5 second rich cycle was highest for the samples with 0% to 37% mixed oxide at evaluation temperatures of 400°C to 500°C.
Technical Paper

The Effect of New Shape Support Material for the Lean Nox Trap Catalyst on its Catalytic Characteristics

2007-08-05
2007-01-3732
The new shape ceria-based support material for a lean NOx trap catalyst (LNT) was developed and its catalytic characteristics were investigated. It has a unique shape that each fine particle of raw material is formed into hollow sphere. Samples of platinum loaded powder catalysts were obtained with either the hollow sphere ceria-based material or two kinds of the conventional shape one, and their catalytic activities were evaluated with the synthetic gas. The aged powder catalyst using the hollow sphere ceria-based material had higher CO oxidation performance at low temperature as compared to the conventional shape one with the same composition. The characterization results indicated that the hollow sphere ceria-based material had high thermal stability.
X