Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Development of State of the Art Compact and Lightweight Thermoelectric Generator Using Vacuum Space Structure

2015-04-14
2015-01-1691
Exhaust heat recovery units that use a thermoelectric element generate electricity by creating a temperature difference in the thermoelectric element by heating one side and cooling the other side of the thermoelectric circuit (module). In this case, the general structure does not directly join the thermoelectric module with the heat sink, and instead presses the thermoelectric module against the heat sink using bolts or other means in order to prevent thermoelectric element damage due to the difference in linear expansion between the cooled and heated sides of the thermoelectric module. However, this poses the issues associated with a complex, heavy and expensive structure. Therefore, a new vacuum space structure was devised that houses the thermoelectric module in a vacuum chamber and presses the module against the heat sink using atmospheric pressure.
Technical Paper

Resistance Spot Welding Process with Pulsed Current Pattern to Improve Joint Strength of Ultra High Strength Steel Sheets

2015-04-14
2015-01-0705
We have developed a new resistance spot welding process with “pulsed current pattern”, which consists of short-time high-current post-heating and short-time cooling to improve joint strength of ultra high strength steel (UHSS) sheets with a tensile strength over 980MPa. The high-current post-heating reheats the heat affected zone (HAZ) near the electrodes and that near the sheet-sheet interface rather than the center of the nugget, and this pulsed current pattern utilizes this procedure to improve the toughness of the nugget. In the case of 980MPa grade steel with a 1.6mm thickness, the pulsed current pattern improved cross tension strength (CTS) from 7.2kN to over 10kN and its failure mode from interface failure to plug failure.
Technical Paper

Development of a Heavy-Duty Turbocharged and Aftercooled CNG-Fueled Lean-Burn Engine - Conversion of a Naturally-Aspirated Diesel Engine into Otto-Type CNG Engine

1993-10-01
932818
A heavy-duty, naturally aspirated diesel engine was converted into a turbocharged, aftercooled, compressed natural gas engine. Engine test results show that excess air ratio and ignition timing strongly affect NOx and THC emissions. Leaning the air-fuel mixture reduces NOx emission, but it increases THC emission and combustion becomes unstable above a certain excess air ratio. Retarding the ignition timing reduces both the NOx and THC emissions. Dual-plug ignition improves brake thermal efficiency. The NOx emission level can be reduced to meet the Japanese long-term emission regulation limit for heavy-duty gasoline engines with a sufficient safety margin by appropriately selecting the air-fuel ratio and ignition timing so as to keep the THC emission level below the regulation limit without using any after-treatment. The engine full torque characteristics were almost the same as the base engine throughout the engine speed range, while the maximum exhaust gas temperature was lower.
X