Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

A new tribology test procedure to investigate ethanol dilution on engine oils

2018-09-03
2018-36-0090
With the worldwide trend towards CO2 emission reduction, renewable fuels such as ethanol are gaining further importance. However, the use of ethanol as a fuel can bring some tribological impacts. Friction and wear of engine parts when lubricants are contaminated with ethanol are not very well understood. Within this scenario, the present paper introduces a new procedure to investigate the ethanol dilution on the performance of engine oils. Friction and wear of actual piston ring and liner were evaluated in a reciprocating test designed to emulate real thermomechanical conditions of both urban and highway car use. In addition to fresh oil, lubricant/ethanol emulsions were prepared carefully following two different procedures - unheated and heated mixing. The former to emulate cold start and “bakery” driving use, the latter to reproduce what happens after the engine heats in normal conditions.
Technical Paper

Advantages and Challenges for Low Viscosity Oils in Emergent Countries

2017-11-07
2017-36-0387
Low viscosity combined with appropriated additive technology is one of the main paths to reduce friction on Internal Combustion Engines. Japan is on the cutting edge of low viscosity oils, having already available SAE 0W-8 in the market. On the other hands, in emergent countries like Brazil, SAE 15W-40 is still used in some passenger cars while the Japanese origin car brands use SAE 0W-20. Lubricant friction additives type also differs depending on the original equipment manufacturer (OEM) origin, and the Japanese ones usually containing high amounts of the Molybdenum type. In this paper, some of the advantages and challenges of using low viscosity oils are discussed and emphasis is given in the friction reduction obtained with the synergic effects of the right choice of additives components type and the material/coating used in the engine parts. Ring-liner rig and floating liner engine tests comparing different oils will be presented.
Technical Paper

Impact of Non-Phosphorus and Non-Ash Engine Oil on After-Treatment Devices

2014-10-13
2014-01-2782
Automobile exhaust gas contains various harmful substances other than carbon dioxide, so exhaust gas post-processing devices have been developed to reduce their environmental load. Engine oil has contributed to the improvement of automobiles' environmental performance due to its excellent fuel-saving and long-drain properties. Recently, the lifetime of an exhaust gas post-processing device has been reported to decrease due to ash and phosphorus in engine oil. We have developed non-phosphorus and non-ash engine oil (NPNA), in which metal-based detergents and zinc dialkyldithiophosphate (ZnDTP) were not contained. We have performed a verification test for NPNA using an actual engine. In a performance test for a diesel particulate filter (DPF), the amount of soot and ash deposited onto a DPF was smaller when NPNA was used than when commercially available engine oil was used.
Technical Paper

Study of Low Viscosity ATF with Extending Gear Fatigue Life

2007-07-23
2007-01-1976
Although it has been reported that the increase of base oil viscosity and the selection of suitable VII (Viscosity Index Improver) are key factors to improve metal fatigue life for the development of low viscosity ATF, the problem of gear fatigue life has not been perfectly solved. In this study, the effect of VII on gear fatigue life was evaluated by using EHD film thickness measurement and the block on ring friction tester. Based on the study, the low viscosity ATF that has good anti-pitting performance in gears can be proposed by optimizing the combination of base oil and VII.
Technical Paper

Study of Non-Phosphorus and Non-Ash Engine oil

2011-08-30
2011-01-2127
Engine oils normally contain calcium detergents and ZnDTPs to have detergency and antiwear performance. However, it has been recently understood that these additives could deteriorate filter performance in catalyst and DPF. In this background this paper explains the study and the development about new type of engine oil excluding metal detergents and phosphorus compounds. The developed engine oil shows good durability in several JASO engine tests and a fleet test by formulating newly developed additives as substitute for calcium detergents and ZnDTPs.
X