Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Development of New Concept Iridium Plug

2001-01-05
2001-01-1201
In the field of automotive gasoline engines, new products aiming at greater fuel economy and cleaner exhaust gases are under development with the aim of preventing environmental destruction. Severe ignition environments such as lean combustion, stronger charge motion, and large quantities of EGR require ever greater combustion stability. In an effort to meet these requirements, an iridium plug has been developed that achieves high ignitability and long service life through reduction of its diameter, using a highly wear-resistant iridium alloy as the center electrode.(1)(2) Recently, direct injection engines have attracted attention. In stratified combustion, a feature of the direct injection engine, the introduction of rich air-fuel mixtures in the vicinity of the plug ignition region tends to cause carbon fouling. This necessitates plug carbon fouling resistance.
Technical Paper

Development of long life and high ignitability iridium spark plug

2000-06-12
2000-05-0143
From the view of suppressing the global warming and environmental pollution, responding to the regulation of fuel consumption and exhaust gases along with lengthening the maintenance interval, are becoming more demanded. The development of a high-performance, long-life spark plug has become essential in response to these demands. While improved performance (high ignitability and low required voltage), the discharge part of the spark plug needs to be reduced in size. But, in the past this has been difficult because of the limitations of platinum alloys in terms of wear. Therefore, it has been quite difficult to achieve both smaller discharge parts and longer life. To dramatically improve wear resistance, we researched materials that are both resistant to oxidation and have a high melting point. This research resulted in our development of a new iridium alloy (Iridium-10wt%Rhodium).
Technical Paper

Development of New Iridium Alloy for Spark Plug Electrodes

1999-03-01
1999-01-0796
From the view of suppressing the global warming and environmental pollution, responding to the regulation of fuel consumption and exhaust gases along with lengthening the maintenance interval, are becoming more demanded. The development of a high-performance, long life spark plug has become essential in response to these demands. While improve performance (high ignitability and low required voltage), the discharge part of the spark plug needs to be reduced in size. But, in the past this has been difficult because of the limitations of platinum alloys in terms of wear. It has been difficult to achieve both smaller discharge parts and longer life. To dramatically improve wear resistance, we researched materials that are both resistant to oxidation and have a high melting point. This research resulted in our development of a new iridium alloy. Through this development we have been able to produce an iridium spark plug that surpasses the conventional platinum technology.
X