Refine Your Search

Search Results

Author:
Viewing 1 to 3 of 3
Technical Paper

Thermo-Swing Wall Insulation Technology; - A Novel Heat Loss Reduction Approach on Engine Combustion Chamber -

2016-10-17
2016-01-2333
To improve fuel efficiency of engines, cooling heat loss is one of the most dominant losses among the various engine losses to reduce. The present work proposes a new heat insulation concept in combustion chamber, "TSWIN (Thermo-Swing Wall Insulation Technology)" that can reduce heat loss to the coolant without any sacrifice in other engine performances. Surface temperature of insulation coat on combustion chamber wall changes rapidly, according with the fluctuating temperature of in-cylinder gas. Reduced temperature differences between them lead to lower heat transfer. During the intake stroke, surface temperature of the insulation coat goes down rapidly, and prevents intake air heating. To realize the scheme mentioned above, a new insulation material with both low thermal conductivity and low volumetric heat capacity, "SiRPA (Silica Reinforced Porous Anodized Aluminum)" was developed and applied on the top surface of the piston.
Technical Paper

Nanostructure Analysis of Primary Soot Particles Directly Sampled in Diesel Spray Flame via HRTEM

2012-09-10
2012-01-1722
For better understanding of soot formation and oxidation processes in diesel spray flame, the nanostructure of primary soot particles directly sampled in a diesel spray flame was investigated via High-Resolution Transmission Electron Microscopy (HRTEM). A single-shot diesel spray flame was achieved in a constant volume combustion vessel under diesel-like conditions (Ta=1000K, Pa=2.7 MPa) and a micro-grid for HRTEM observation was directly exposed to the spray flame to thermophoretically sample soot particles onto the grid surface. A preliminary nanostructure investigation was conducted for x500k magnification HRTEM images of soot particles directly sampled in diesel spray flames of Fischer-Tropsch Diesel (FTD) fuel seeded with naphthalene as a representative aromatic substance. A MATLAB code for HRTEM image processing and analysis of lattice fringes within primary soot particles was developed and used to characterize the length, tortuosity and separation of lattice fringes.
Technical Paper

Transmission Electron Microscopy of Soot Particles sampled directly from a Biodiesel Spray Flame

2011-08-30
2011-01-2046
For better understanding of soot formation and oxidation processes in a biodiesel spray flame, the morphology, microstructure and sizes of soot particles directly sampled in a spray flame fuelled with soy-methyl ester were investigated using transmission electron microscopy (TEM). The soot samples were taken at different axial locations in the spray flame, 40, 50 and 70 mm from injector nozzle, which correspond to soot formation, peak, and oxidation zones, respectively. The biodiesel spray flame was generated in a constant-volume combustion chamber under a diesel-like high pressure and temperature condition (6.7 MPa, 1000K). Density, diameter of primary particles and radius of gyration of soot aggregates reached a peak at 50 mm from the injector nozzle and was lower or smaller in the formation or oxidation zones of the spray.
X