Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Development of Safety Performance for FC Stack in the New Toyota FCEV

2022-03-29
2022-01-0686
The new Toyota Mirai hydrogen fuel cell electric vehicle (FCEV) was launched in December 2020. Achieving a low-cost, high-performance FC stack is an important objective in FCEV development. At the same time, it is also necessary to ensure vehicle safety. This paper presents an overview of the safety requirements for onboard FC stacks. It also describes the simulation and evaluation methods for the following matters related to the FC stack. i) Impact force resistance: The FC stack was designed to prevent cell layer slippage due to impact. Constraint force between the cell layers is provided by the frictional force between the cells and an external constraint. A simulation of the behavior of the cell layers under impact force was developed. The impact force resistance was confirmed by an impact loading test. ii) Hydrogen safety: The FC stack was designed so that permeated hydrogen is ventilated and the hydrogen concentration is kept below the standard.
Journal Article

Development of New Plug-In Hybrid System for Compact-Class Vehicle

2017-03-28
2017-01-1163
A next-generation plug-in hybrid system has been developed for the new Prius Prime. The objective of this development was to maximize the performance of the Toyota Hybrid System II (THS II) developed for the new fourth generation Prius HV, while achieving even better dynamic performance in electric vehicle (EV) mode. These objectives were accomplished by the adoption of new components and systems, as well as refinements to existing hybrid vehicle (HV) components. This paper describes the development of this new plug-in hybrid system.
Technical Paper

Validation Test Result Analysis of Plug-in Hybrid Vehicle

2013-04-08
2013-01-1464
In recent years, many various energy sources have been investigated as replacements for traditional automotive fossil fuels to help reduce CO2 emissions, respond to instabilities in the supply of fossil fuels, and reduce emissions of air pollutants in urban areas. Toyota Motor Corporation considers the plug-in hybrid vehicle (PHV), which can efficiently use electricity supplied from infrastructure, to be the most practical current solution to these issues. For this reason, Toyota began sales of the Prius Plug-in Hybrid in 2012 in the U.S., Europe and Japan. This is the first PHV to be mass-produced by Toyota Motor Corporation. Prior to this, in December 2009, Toyota sold 650 PHVs through lease programs for validation testing in the U.S., Europe and Japan. Additional 30 PHVs were introduced in China in March 2011 for the same objective.
Technical Paper

Development of a Super-Flat Torque Converter for the New Toyota FWD 6-Speed Automatic Transaxle

2006-04-03
2006-01-0149
Toyota Motor Corporation has developed a new super-flat torque converter for the Flex Start System. It is installed in a new six-speed automatic transaxle (U660E) for front engine, front wheel drive vehicles. The Flex Start System is the first technology in the world that can start smoothly and reduce torque converter slipping loss by using a lock-up clutch at start. The newly developed super-flat torus achieves a high torque capacity and a maximum efficiency of 90%. Fuel economy is increased further by adding an efficient damper for low-speed lock-up in the free space provided by utilizing the super-flat torus. Toyota also developed a simple and super-flat structure at the one-way clutch (O.W.C.) area. This paper describes the structure, features, and performance of this new torque converter and the Flex Start System.
Technical Paper

Analysis of a Series/Fail-Safe Electro-Hydrostatic Brake System Concept

1996-02-01
960990
The objective of this research is to create a new brake system with fewer mechanical parts, higher performance, greater flexibility for adaptation to new functions, and lower cost. A simple/series electro-hydrostatic brake system is investigated as an inexpensive, reliable, and redundant integrated brake system that can include the functions; Boost, ABS, TCS, VDC, etc. Production issues are considered. The required motor power is the most critical and is estimated by simulation based on data from experiments. To reduce this power a flow boost self-energizing mechanism with computer control is explored, and it is found that the effect is significant. Robustness of the control for pad friction fluctuation is also analyzed, and the limitation is estimated. The result of analysis shows that a competitive commercial product can be developed.
Technical Paper

Development of Four Solenoid ABS

1996-02-01
960958
To develop Low-cost system, we used matrix function under the condition of the vehicle having symmetrical brake conduit and four-wheel control capability. As a result, 3 SOL system is a likely candidate for rear-wheel drive vehicles, and a 4 SOL system for front wheel drive vehicles by using a orifices instead of the Normal-Open solenoid. In developing a logic system, we used the learning control function with a duty pointer containing four hydraulic wave modes. The actuator weighs 2.2kg and has a volume of 1.2 liters (W90 × H105 × L133)
X