Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Study on Realization of Dual Combustion Cycle by Lean Mixture and Direct Fuel Injection

2018-10-30
2018-32-0011
The purpose of this study is to realize dual-combustion cycle for gasoline engines. For the purpose, lean combustion and direct fuel injection were applied to small diesel engine. The lean gasoline-air mixture was provided and was ignited by small amount of pilot diesel fuel injection (constant volume combustion). Then, diesel fuel was injected by main injection and was burned with the remained oxygen after the lean combustion (diffusion combustion). The equivalence ratio 0.3, 0.4 and 0.5 of mixture were used to avoid the spontaneous compression auto-ignition. The total equivalence ratio with supplied gasoline and diesel fuel was adjusted to 1.0. The base pilot injection timing was selected as the ignition of pre-mixture took place at T.D.C. and pilot injection timings were changed 2 degree before and behind of base timing. The main fuel injection timings were 50, 75 and 100% of the duration between pilot injection timing and T.D.C.
Technical Paper

An Effect of Bio Diesel Fuel for Low Compression Ratio Diesel Engine

2017-11-05
2017-32-0088
The purpose of this study is to explore an effect of the coconut oil methyl ester (CME) and vegetable oil methyl ester (VME) on a low compression ratio diesel engine performance. CME and VME were produced from coconut oil and vegetable oil with methanol, respectively. Vegetable oil was assumed to contain 60 wt.% of soybean oil and 40 wt.% rapeseed oil. The engine performance was measured in the steady operating condition at 3600 rpm of engine speed. The ignition timings of CME and VME were advanced and the maximum cylinder pressures of CME and VME were higher as compared with the diesel fuel at low compression ratio, because CME and VME consisted of medium chain fatty acid methyl esters. The ignitability of CME was superior to VME, because CME consisted of saturated fatty acid. The brake thermal efficiency of diesel fuel was slightly higher than CME and VME at any compression ratios.
X