Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Application of predictive techniques of vibration analysis and lubricant analysis for monitoring components and preventing failure in internal combustion engines

2023-02-10
2022-36-0110
Over the years, the application of predictive analysis techniques in internal combustion engines to detect internal component wear and avoid catastrophic engine failures has evolved a lot. Among the most used are the vibration analysis and analysis of lubricating oil. The objective of this study is to investigated the vibrational behavior of an internal combustion engine in function of fuel and the type of technologies incorporated into automotive oils. The results show that the vibration level of the engine increases with the time of use of the lubricating oil and that this increase is very significant when the oil viscosity reaches the minimum value stipulated by the manufacturer. Semi-synthetic and synthetic lubricating oils have similar engine protection characteristics, but synthetic oil protecSt the engine for a longer period of time due to less degradation of chemical properties compared to semi-synthetic.
Technical Paper

Comparative analysis of the internal combustion engine block vibration with gasoline and ethanol fuel

2022-02-04
2021-36-0010
Ethanol and gasoline are widely used with fuels in Otto cycle engines. These fuels have different heating power and octane number and the engine behaves differently depending on the type of fuel used. The objective of this study is to measure, compare and investigate the factors that affect the block vibration of an internal combustion engine as a function of the fuel used ethanol or gasoline. The experiment consisted of instrumenting the side of the engine block with an accelerometer to measure the level of vibration intensity of the engine running on a bench dynamometer varying engine speed and load conditions. The results showed that the engine vibration level increases with the increase in engine speed and load. The highest level of vibration was achieved in the region of maximum torque and maximum pressure combustion. The combustion process is mainly responsible for the highest level of vibration achieved with ethanol.
Technical Paper

Measuring and Comparing the Ignition Delay Times of Diesel, Ethanol Additive and Biodiesel Using a Shock Tube

2014-09-30
2014-36-0187
A burning process in a combustion chamber of an internal combustion engine is very important to know the maximum temperature of the gases, the speed of combustion, the ignition delay time of fuel and air mixture exact moment at which ignition will occur. The automobilist industry has invested considerable amounts of resources in numerical modeling and simulations in order to obtain relevant information about the processes in the combustion chamber and then extract the maximum engine performance control the emission of pollutants and formulate new fuels. This study aimed to general construction and instrumentation of a shock tube for measuring shock wave. As specific objective was determined reaction rate and ignition delay time of diesel, biodiesel and ethanol doped with different levels of additive enhancer cetane number. The results are compared with the ignition delay times measured for other authors.
Technical Paper

New Methodology for the Analysis of Global Impact of New Technologies

2014-09-30
2014-36-0191
It is increasingly urgent to define a technology that allows the replacement current vehicles powered by internal combustion engines by a more sustainable vehicle. There are several technological options such as electric vehicles, hybrids and vehicles powered by biofuels. So far there is no clear methodology for comparing the strengths and weaknesses of these alternative technologies. This paper presents a methodology that aims to compare from a strategic point of view technological alternatives comprehensively prioritizing their impacts throughout the lifecycle thus providing a clearer basis for decision making.
X