Refine Your Search

Search Results

Author:
Viewing 1 to 5 of 5
Technical Paper

The Influence of Superficial Soft Tissues and Restraint Condition on Thoracic Skeletal Injury Prediction

2001-11-01
2001-22-0008
The purpose of this study is to evaluate the hard tissue injury -predictive value of various thoracic injury criteria when the restraint conditions are varied. Ten right-front passenger human cadaver sled tests are presented, all of which were performed at 48 km/h with nominally identical sled deceleration pulses. Restraint conditions evaluated are 1) force-limiting belt and depowered airbag (4 tests), 2) non-depowered airbag with no torso belt (3 tests), and 3) standard belt and depowered airbag (3 tests). Externally measured chest compression is shown to correspond well with the pre sence of hard tissue injury, regardless of restraint condition, and rib fracture onset is found to occur at approximately 25% chest compression. Peak acceleration and the average spinal acceleration measured at the first and eighth or ninth thoracic vertebrae are shown to be unrelated to the presence of injury, though clear variations in peaks and time histories among restraint conditions can be seen.
Technical Paper

Repeatability Evaluation of the Pre-Prototype NHTSA Advanced Dummy Compared to the Hybrid III

2000-03-06
2000-01-0165
A comparison of the NHTSA advanced dummy and the Hybrid III is presented in this paper based on their performance in repeated sled tests under 3 different restraint systems. The restraint systems considered are: the airbag alone, the 3-point belt alone, and a combined use of the airbag and the 3-point belt. Various time-histories pertaining to accelerations, angular velocities, deflections and forces have been compared between the two dummies in order to study their repeatability. The Hybrid III appears to be more repeatable than the NHTSA advanced dummy in its response in one case, that of restraint with the 3-point belt alone. The response of the NHTSA advanced dummy in other two restraint modes, the airbag alone and the combination of 3-point belt and airbag, appears to be no less repeatable than that of Hybrid III in this series of tests.
Technical Paper

Comparative Performance Evaluation of THOR and Hybrid III

2000-03-06
2000-01-0161
A comparison of the NHTSA advanced dummy, THOR, and the Hybrid III dummy is presented in this paper, based on their performance in four vehicle barrier tests, six HYGE sled tests and twenty two pendulum chest–impact tests. Various time–histories pertaining to accelerations, angular motions, deflections, forces and moments are compared between the two dummies in light of their design difference. In general, in the vehicle crash tests, the resultant head acceleration and chest deflection in THOR are greater than those in the HYBRID III. The shear, axial force and lateral moment in THOR's lumbar are less than those in the Hybrid III in frontal impacts. The differences in the head/chest acceleration and chest deflection could be due to the differences in the construction of the neck and the thorax of the THOR when compared to those of the Hybrid III. The THOR and the Hybrid III have the same level of repeatability in the rear impact sled tests.
Technical Paper

COMPARISON OF THE PRE-PROTOTYPE NHTSA ADVANCED DUMMY TO THE HYBRID III

1997-02-24
971141
A comparison of the NHTSA advanced dummy and the Hybrid III is presented in this paper based on their performance in twenty four frontal impact sled tests. Various time histories pertaining to accelerations, angular velocities, deflections and forces have been compared between the two dummies in light of their design differences. This has lead to some understanding about the differences and similarities between the NHTSA advanced dummy and the Hybrid III. In general, the chest as well as the head motion in the NHTSA advanced dummy are greater. The lumbar moments in the NHTSA advanced dummy are lower than that in the Hybrid III. The upper and lower spine segments in the NHTSA advanced dummy, generally rotate more than the spine of the Hybrid III.
Technical Paper

Technical Specifications of the SID-IIs Dummy

1995-11-01
952735
The SID-IIs is a small [s], second-generation [II] Side Impact Dummy [SID] which has the anthropometry of a 5th percentile adult female. It has a mass of 43.5 kg, a seated height of 790 mm, and over 100 available data channels. Based on the height and mass, this is equivalent to an average 12-13 year old adolescent. The state-of-the-art SID-IIs has special application in evaluating the performance of side impact airbags. The dummy has undergone prototype testing and will shortly be available for worldwide evaluation. This paper describes the technical details of the dummy, its biomechanical design targets, how well it met those targets, its validation requirements, and its instrumentation. The dummy is the product of a joint development agreement between the Occupant Safety Research Partnership (OSRP) of USCAR and First Technology Safety Systems.
X