Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

System Overview of the Columbus APM Environmental Control “Design-to-Cost” Baseline

1995-07-01
951527
As a consequence of the reduced funding by the ESA Member States contributing to the Columbus and Manned Transportation Programmes, the Columbus Project has undergone two major cost reduction exercises since 1993. An important cost reduction was achieved in mid '93 by downsizing the Attached Pressurized Module (APM) from 8 to 5 Double Racks equivalent length. To reduce the costs further, in 1994 the European space industry took the opportunity of exploiting specific features of the APM common with those of other projects, potential candidates being the Mini Pressurized Logistic Module (MPLM), developed by the Italian Space Agency (ASI) for NASA, or the European developed Russian Data Management System (DMS-R). In addition simplifications in System Function and in the Verification approach and maximum use of Off-the-Shelf and Commercial/Aviation/Military (CAM) hardware were investigated.
Technical Paper

Introduction of Commonality for Design, Procurement and Verification of the ECLS Subsystems of the Columbus Orbitial Facility and the Mini Pressurized Logistics Module

1995-07-01
951526
Synergy between space programmes offers the chance to significantly reduce cost, shorten project schedules and allow an efficient use of available development resources. The Columbus Orbital Facility (COF) of the European Space Agency (ESA), and the Mini Pressurized Logistics Module (MPLM), of the Italian Space Agency (ASI) are of sufficient similarity in module size, external interfaces, internal configuration and required performance, that the synergy between the two programmes can be established for essential functions in the specific area of the Environmental Control and Life Support (ECLS) Subsystem.
Technical Paper

Columbus APM Environmental Control System Overview: Space Station and APM Restructuring Consequences

1994-06-01
941305
This paper describes the main changes affecting the APM Environmental Control System (ECS) as a consequence of the Space Station Freedom (SSF) restructuring and Columbus APM overall reconfiguration. The main purposes of this reconfiguration are: minimize the number and complexity of the interfaces with Space Station Freedom (SSF) centralize avionics command and monitoring tasks revisit the failure tolerance concept of some ECS functions unify/standardize similar functions in the two subsystem adjust lifetime requirements and simplify maintenance concept of equipment. The APM ECS consists of the following functions: active thermal control (ATCS) passive thermal control (PTCS) atmosphere pressure and composition control air revitalization and cabin ventilation temperature and humidity control vacuum and venting nitrogen supply fire detection and suppression. The new ATCS configuration provides a cooling capability for a reduced number of P/L racks by means of its moderate loop.
X