Refine Your Search

Search Results

Viewing 1 to 20 of 20
Technical Paper

Force Response Characteristics of Square Columns for Selected Materials at Impact Loading Conditions Based on FEA

1998-09-29
982418
The crush behaviors of hollow square columns made of 45 different materials with emphasis on aluminum alloys and at two impact energy levels were simulated with FEA software DYNA3D. The force response curves based on the FEA simulation results were studied. Analysis of variance, cluster analysis, and principal component (PC) analysis were employed to analyze the data with SAS programs. The regression equations for calculating the peak force and time duration are given. The significance of the material properties and the impact energy levels to the peak force and the time duration are discussed. Finally, a procedure to predict the force response characteristics for a new material was suggested based on the current established database.
Technical Paper

Effect of Structural Stiffness and Kinetic Energy on Impact Force

1996-08-01
961852
This study relates the structural stiffness and kinetic energy of impact (between 34 J and 136 J) to the resulting contact force and duration of force rise for a square tube with wall thickness between 12.7 mm and 25.4 mm. LS-DYNA3D, finite element program was used for the analysis. Two materials, AISI 4340 and AISI 301 steel, are used as examples. Regression equations for predicting the relationship between the structural stiffness, maximum force and duration of force rise are given for each material.
Technical Paper

EMA Durability Tests on High Oleic Sunflower and Safflower Oils in Diesel Engines

1996-08-01
961846
This paper presents the evaluation results from the EMA durability test on 25% high oleic sunflower oil/75% diesel fuel and 25% high oleic safflower oil/75% diesel fuel. The test results from both fuels were compared to the outcome for a standard diesel fuel. The fuels were compared based on the performance and emissions results including; power output, fuel consumption, CO, CO2, NO and HC and the carbon and lacquer residue formation on the internal parts of the engine. The results indicated no significant change in engine performance for the tested fuels, throughout the duration of the investigation. The carbon and lacquer residue formations were within a normal range for both fuels in comparison to the results from the fuel for standard diesel fuel.
Technical Paper

Comparative Analysis of Plant Oil Based Fuels

1995-09-01
952061
This paper presents the evaluation results from the analysis of different blends of fuels using the 13-mode standard SAE testing method. Six high oleic safflower oil blends, six ester blends, six high oleic sunflower oil blends, and six sunflower oil blends were used in this portion of the investigation. Additionally, the results from the repeated 13-mode tests for all the 25/75% mixtures with a complete diesel fuel test before and after each alternative fuel are presented.
Technical Paper

A Study of Energy Released During Premixed Combustion

1993-09-01
932478
The paper* describes the analysis of experimental results of a laboratory flow apparatus used to measure the energy released during premixed combustion at atmospheric pressure in near quiescent air. The flow apparatus, described in a parallel paper, has the means to provide air temperatures in the range between 800 and 950° K. An infrared radiation detector and a photodiode sensitive to radiation in the visible range of the electromagnetic spectrum monitor the events taking place inside the combustion chamber through a sapphire lens. A beam splitter permits simultaneous observation of the combustion events by both sensors. The difference in response times between the two sensors offers information about the non-luminous premixed combustion. Four fuels, No. 2-D diesel fuel, a 50/50% volumetric mixture of diesel fuel and sunflower oil, neat sunflower oil, and neat high oleic safflower oil were used.
Technical Paper

Apparatus for Premixed Combustion Analysis

1993-09-01
932477
The paper* describes the design and operation of a laboratory combustion chamber used to study the energy released during the premixed burning phase of diesel combustion. The flow apparatus operates at atmospheric pressure and has the means to provide near quiescent air at temperatures in the range between 800 and 950° K which is the typical temperature range at the end of compression stroke in a diesel engine. A rotary injection pump with a trigger mechanism delivers equal amounts of fuel to an injector, which sprays it into the constantly replenished supply of fresh, hot air for combustion. An infrared radiation detector and a photodiode sensitive to radiation in the visible range of the electromagnetic spectrum monitor the events taking place inside the combustion chamber through a sapphire lens. A beam splitter permits simultaneous observation of the combustion events by both sensors.
Technical Paper

Design Modifications for Durability Improvements of Diesel Engines Operating on Plant Oil Fuels

1992-09-01
921630
The paper describes engine modifications, which are proposed to provide a means to overcome the adverse effect of sunflower oil fuel on diesel engines' longevity. The proposed system consists of a dual fuel system and fuel preheater. The dual fuel system was designed to eliminate engine conditions that are responsible for the majority of the problems associated with the use of sunflower oil fuel. Specifically, the dual fuel system will (1) prevent the operation of an engine on alternative fuels at low-load, low-speed conditions, (2) reduce the exposure time of the fuel injection system to the sunflower oil at the excessively high temperature conditions during the transition process from high to light loads, (3) eliminate the conditions (such as cold start-up) at which the fuel temperature is too low for acceptable atomization, and (4) eliminate the exposure of the fuel injection system to sunflower oil during the shut-down period.
Technical Paper

Comparative Analysis of the Exhaust Emissions for Vegetable Oil Based Alternative Fuels

1992-02-01
920195
A neat, alkali-refined sunflower oil, a 50/50 blend (v/v) of sunflower oil and #2 diesel fuel, and 100% #2 diesel fuel were evaluated in a direct injected, one-cylinder Petter engine according to the SAE 13 mode test procedure. The experiment was conducted to evaluate the effects of plant oil based alternative fuels on exhaust emissions and to simultaneously compare the test fuels. Additionally, the effect of engine load and speed on the exhaust emissions using the plant oil alternative fuels was statistically evaluated. The response variables were CO, NO, HC, and smoke. The predictor variables were the concentration of sunflower oil in the test fuel, the engine speed, and load. A multivariate test and covariance analysis were used for the results evaluation.
Technical Paper

Development of an Infrared Method for Ignition Delay Measurements

1991-02-01
910847
The paper describes experimental validation of a laboratory flow apparatus used to measure the ignition delay times of diesel fuels at atmospheric pressure in near quiescent air. To validate the proposed method the experimental data were compared with the results from the studies performend on non-engine combustion chambers with continuous air flow at atmospheric pressure and various temperatures. The proposed flow apparatus, described in an earlier paper, has the means to provide air temperatures in the range between 650 and 730°C. An infrared radiation detector monitors the evolution of the temperature inside the combustion chamber. Ignition delay is measured as the time interval between the beginning of the needle lift and the beginning of increase in infrared radiation detected by the sensor. Six test fuels were used.
Technical Paper

Apparatus for the Measurement of Ignition Delay Times for Diesel Engine Fuels

1990-09-01
901617
The paper describes the design and operation of a laboratory combustion chamber used to measure the ignition delay times of diesel engine fuels at atmospheric pressure in near quiescent air. The flow apparatus has the means to provide air temperatures in the range between 650 and 730°K which is the typical temperature range at the end of the compression stroke in a diesel engine. An injection pump with a trigger mechanism delivers equal amounts of fuel to an injector, which sprays it into the constantly replensihed supply of fresh, hot air for combustion. An infrared radiation detector monitors the evolution of the temperature inside the combustion chamber. Ignition delay is measured as the time interval between the beginning of the needle lift and the beginning of increase in infrared radiation detected by the sensor. Test results for two fuels are presented and compared with the results from previous studies performed under similar test conditions.
Technical Paper

Fuel-Air Injection Nozzle for Diesel Engines

1989-09-01
891944
The development of a fuel-air injection nozzle that injects a premixed fuel and air and then a quantity of clean air into the combustion chamber is described. The new injection nozzle provides better controllability of fuel-air mixing and fuel evaporation. Additionally, the clean air injection following the fuel-air mixture injection prevents stagnant fuel accumulations in the nozzle tip. Therefore, the fuel-air injection nozzle is of particular advantage for use with difficult fuels such as plant oils for long term operation. The fuel-air injection nozzle was tested in an engine running on sunflower oil giving significant reduction in carbon buildup. No engine modifications were necessary for the fuel-air injection nozzle installation.
Technical Paper

Discharge Coefficients for Multi-Hole Fuel Injection Nozzle for Alternate Fuels

1989-02-01
890448
The flow of diesel fuel through multi-hole injection nozzles is well understood. There are, however, no comprehensive experimental results for the design of injection nozzles for alternate fuels. A steady state flow generator was designed and employed to analyze the effects of the physical fuel properties and the needle lift on the discharge coefficient for the nozzle orifice. Three fuels were tested: diesel reference fuel, a 50/50 mixture of diesel fuel and sunflower oil, and 100%. sunflower oil. The fuel viscosities range from 3.0 cS to 30.0 cS at 40°C. Five injection pressures ranging from 3.5 to 13.8 MPa, and eight increments of needle lift between 0.031 and 0.940 mm were used in this investigation. A significant influence of needle lift, injection nozzle pressure, and physical properties of fuels on the flow coefficient in the normal operating range of a typical diesel engine was proven.
Technical Paper

Effect of Lacquer Deposits from Sunflower Oil on Injection Needle Mobility for Different Needle Guide Clearances

1988-09-01
881336
The effect of increased clearance between the needle and its guides in a fuel injection nozzle on the rate of lacquer deposit formation from neat sunflower oil was investigated. Bosch fuel injection nozzles were tested on a fuel v injection calibration stand. The needle clearance reduction due to deposit buildup was monitored with a pneumatic leak test. Two test series of 100 hours duration each were performed at a temperature of 350°C. Each series consisted of ten 10-hour segments with a complete system shutdown after each segment. For the first test series the system was allowed to cool down before each shutdown. During the second test series the system was stopped while still hot. For fuels with physical and chemical properties similar to those of neat sunflower oil, excessive residue on the internal surfaces of the injection nozzles is likely to occur with the ultimate result of complete needle immobility.
Technical Paper

Reduced Injection Needle Mobility Caused by Lacquer Deposits from Sunflower Oil

1988-02-01
880493
The effect of temperature on the rate of lacquer deposit formation from neat sunflower oil on the needles of fuel injection nozzles was investigated. Boson fuel injection nozzles were tested on a fuel injection calibration stand. A pneumatic leak test was developed to monitor the needle clearance reduction due to deposit buildup. For fuels with physical and chemical properties similar to those of neat sunflower oil, excessive residue on the internal surfaces of the injection nozzles is likely to occur with the ultimate result of complete needle immobility. The rate of the lacquer buildup on the needle increases with temperature. Prior to final needle sticking, delay in start of injection, sluggish needle lift, increases in duration of injection, maximum, final residual, and maximum residual line pressures, and decrease in maximum needle lift can be observed. Based on the obtained results, the temperature of injection nozzles handling plant oil fuels should be kept as low as possible.
Technical Paper

On the Thermal Decomposition and Residue Formation of Plant Oils

1986-10-01
861582
Plant oils are considered viable replacement fuels for diesel engines. However, in order to become successful diesel fuel substitutes, problems associated with the formation of lacquer and carbon deposits on engine components must be resolved, else truly long-term engine reliability will not be possible. This paper reports some basic experiments into the formation of residues due to liquid phase reactions of a number of plant oils as a function of temperature. Heating tests on suspended drops of sunflower, corn, olive, and safflower oils were performed. Residue deposits were measured. For a heating air temperature of approximately 300°C, roughly 50% of the original oil drop mass remained as residue. This amount rapidly decreased as the air temperature was increased. Above approximately 500°C small amounts of residue formed which burned off shortly after formation. A methyl ester of sunflower oil also tested formed substantially less residue than any of the neat plant oils.
Technical Paper

The Effect of Exhaust-to-Coolant Heat Transfer on Warm-up Time and Fuel Consumption of Two Automobile Engines

1986-02-01
860363
A 1977 Buick V-6 engine and a 1981 Ford Granada automobile were equipped with heat exchangers to transfer energy from the exhaust gases to the cooling water after cold starts in order to shorten engine warm-up periods and improve fuel economy. A parallel concern was the time required to reach satisfactory heat delivery to the passenger compartment. The Buick engine was investigated in the laboratory. The Ford automobile was tested during driving over a 12.4 km length of freeway and over an 8.6 km test route including both in-town and highway segments. Prior to each test run the engines were exposed to ambient air for at least 8 hours at temperatures ranging from −26° C to + 2° C. The use of the heat exchangers resulted in average reductions of fuel consumption of 2.8% during a 7 minute warm-up period for the engine, and of 2.2% for the autombile when tested on the above test routes.
Technical Paper

Fuel Injection Anomalies Observed During Long-Term Engine Performance Tests on Alternate Fuels

1985-10-01
852089
A 25-75 blend (v/v) of alkali-refined sunflower oil and diesel fuel, a 25-75 blend (v/v) of high oleic safflower oil and diesel fuel, a non-ionic sunflower oil-aqueous ethanol micro-emulsion, and a methyl ester of sunflower oil were evaluated as fuels in a direct injected, turbocharged, intercooled, 4-cylinder Allis-Chalmers diesel engine during a 200-hour ERA cycle laboratory screening endurance test. Engine performance on Phillips 2-D reference fuel served as baseline for the experimental fuels. This paper deals with several aspects of the anomalous behavior of the fuel injection system and its effects on long-term engine performance as experienced during the operation with the alternate fuels. Particular attention was paid to the changes in injection timing and the rates of injection pressure. Furthermore, secondary injection phenomena, initial and final stages of the fuel injection, which have been recognized as very frequent causes of abnormal combustion behavior, were analyzed.
Technical Paper

Performance of a Diesel Engine Operating on Blends of Diesel Fuel and Crude Sunflower Oil at Normal and Elevated Fuel Temperatures

1985-10-01
852087
An unmodified, direct-injected diesel engine was operated on diesel fuel and three blends of diesel fuel and sunflower oil. Heating of the fuels was used to change their viscosities. At normal fuel temperatures, specific fuel consumption and smoke emission increased for any power as sunflower oil content increased. Overall efficiency and exhaust temperature showed virtually no changes with fuel composition. Increasing fuel temperature caused a shift of best overall efficiency from high to low speeds, the magnitude of the shift depending on the plant oil concentration of the fuel. Thus fuel heating as a means of viscosity control may result in an efficiency penalty in the normal operating range of an engine. Typical plant oil induced engine contaminations such as wet stacking, excessive carbon accumulations, nozzle orifice blocking, and lubrication oil gelling were experienced.
X