Refine Your Search

Search Results

Author:
Viewing 1 to 9 of 9
Technical Paper

Activity of Prototype Catalysts on Exhaust Emissions from Biodiesel Fuelled Engines

2008-10-06
2008-01-2514
A prototype catalyst has been developed and integrated within the aftertreatment exhaust system to control the HC, CO, PM and NOx emissions from diesel exhaust gas. The catalyst activity in removing HC and nano-particles was examined with exhaust gas from a diesel engine operating on biodiesel - Rapeseed Methyl Ester (RME). The tests were carried out at steady-state conditions for short periods of time, thus catalyst tolerance to sulphur was not examined. The prototype catalyst reduced the amount of hydrocarbons (HC) and the total PM. The quantity of particulate with electrical mobility diameter in nucleation mode size < 10nm, was significantly reduced over the catalyst. Moreover, it was observed that the use of EGR (20% vol.) for the biodiesel fuelled engine significantly increases the particle concentration in the accumulation mode with simultaneous reduction in the particle concentration in the nuclei mode.
Journal Article

GC-MS Speciation and Quantification of 1,3 Butadiene and Other C1-C6 Hydrocarbons in SI / HCCI V6 Engine Exhaust

2008-04-14
2008-01-0012
It is known that the levels of hydrocarbon (HC) emissions from Homogeneous Charge Compression Ignition (HCCI) engines are relatively higher than that of Spark-Ignition (SI) engines because of the lower combustion temperature. In order to improve understanding of the mechanisms and products of HCCI combustion in comparison with SI combustion, a quantitative analysis of individual hydrocarbons in the C1 - C6 range emitted in the exhaust gases of gasoline direct injection V6 engine operating in SI and HCCI modes with cam profile switching has been carried out using gas chromatography - mass spectrometry (GCMS) apparatus attached on-line to engine exhaust. In this study, with a GC run time of 20 minutes all aliphatic and olefinic hydrocarbon species in the range C1 to C6 are resolved.
Technical Paper

Particulate Emissions from a Common Rail Fuel Injection Diesel Engine with RME-based Biodiesel Blended Fuelling Using Thermo-gravimetric Analysis

2008-04-14
2008-01-0074
Increasing biodiesel content in mineral diesel is being promoted considerably for road transportation in Europe. With positive benefits in terms of net CO2 emissions, biofuels with compatible properties to those of conventional diesel are increasingly being used in combustion engines. In comparison to standard diesel fuel, the near zero sulphur content and low levels of aromatic compounds in biodiesel fuel can have a profound effect not only on combustion characteristics but on engine-out emissions as well. This paper presents analysis of particulate matter (PM) emissions from a turbo-charged, common rail direct injection (DI) V6 Jaguar engine operating with an RME (rapeseed methyl ester) biodiesel blended with ultra low sulphur diesel (ULSD) fuel (B30 - 30% of RME by volume). Three different engine load and speed conditions were selected for the test and no modifications were made to the engine hardware or engine management system (EMS) calibration.
Technical Paper

On board Exhaust Gas Reforming of Gasoline Using Integrated Reformer & TWC

2007-09-16
2007-24-0078
Producing on-board the hydrogen that is to be used as supplementary fuel by exhaust gas reforming of gasoline shows encouraging results. Extensive research has been done at the University of Birmingham towards on board generation of hydrogen-rich gaseous fuel. Exhaust gas reforming which utilizes water vapor and enthalpy from the hot engine exhaust gas was applied using a compact system of a fuel reformer reactor integrated with the three way catalytic converter (TWC). Such system can be fitted in the limited space close to the engine. The device has been designed and built in concentric shape with the catalytic converter as a core and the reformer in an annular shape outside, to best utilize the waste heat from the catalytic converter. It requires very little extra space beyond the baseline catalytic converter.
Technical Paper

A Study of Quantitative Impact on Emissions of High Proportion RME-Based Biodiesel Blends

2007-01-23
2007-01-0072
Previous work of the authors' group has shown that biodiesel fuels as a replacement for conventional diesel fuel in engine combustion can reduce PM level dramatically while lowering some other regulated emissions as well. It has shown that these fuels have the potential to increase the overall engine performance due to their lower sulphur and/or aromatics content compared with standard diesel fuels. This paper presents a study on a single cylinder naturally aspirated direct injection (DI) diesel engine, equipped with a pump-line-nozzle injection system, operating with varied biodiesel fuel blends (0%, 25%, and 50% of RME by volume) with ultra low sulphur diesel fuel (ULSD). The detailed analysis of the measurement data shows that the ignition delay and exhaust emissions are affected by the proportion of biodiesel due to the effect of different physical and chemical properties of the two fuels.
Technical Paper

Droplet Velocity/Size and Mixture Distribution in a Single-Cylinder Four-Valve Spark-Ignition Engine

1998-02-01
981186
Laser Doppler velocimetry, phase Doppler anemometry and Mie scattering were applied to a single-cylinder, four-valve, spark-ignition gasoline research engine equipped with a fully transparent liner and piston, to obtain information about the tumble flow and the droplet size and velocity distributions during induction and compression, for lean air/fuel mixture ratios of 17.5 and 24 and with closed-valve and open-valve fuel injection. The mixture distribution obtained with the two injection strategies was correlated with flame images, pressure analysis and exhaust emissions which confirmed the advantages of combining open-valve injection with tumble to allow stable and efficient engine operation at an air/fuel ratio of 24 through charge stratification and faster flame growth.
Technical Paper

Cyclic Variations in a Lean-Burn Spark Ignition Engine Without and With Swirl

1995-02-01
950683
Measurements of cylinder pressure and flame travel velocity have been obtained in a single cylinder engine with two arrangements of port geometry and with mixture equivalence ratios from 0.68 to 0.9. They are complemented by photographs of the flame development and measurements of local velocity. The investigation compares the combustion processes in terms of the maximum pressure, flame speed and in-cylinder flow velocity without and with an intake shroud which increased both the tumble and swirl ratios. The extent to which residual burned gas retarded the combustion rate and increased cyclic variability are quantified. The photographic studies confirm the dominant effect of the swirling flow on flame propagation and deviations of the flame kernel from spherical as the air-fuel ratio is increased, with much higher probability of influence of velocity fluctuations.
Technical Paper

Imaging of Lean Premixed Flames in Spark-Ignition Engines

1994-10-01
942052
Two optical single-cylinder spark-ignition engines equipped with two- and four-valve cylinder heads were used to examine the flow and flame interaction under lean mixture conditions. Images of the developing flame under quiescent, swirl, low tumble and high tumble flow conditions corresponding to a wide range of mean velocity and turbulence levels around the time of ignition were obtained with an image-intensified CCD camera using the light radiated by the flame and the flow in the vicinity of the spark plug was quantified by laser Doppler velocimetry. In the case of the tumbling flow, the flame images were software-processed to allow estimation of the total flame area, the displacement of its centre as a function of crank angle and their correlation with the cylinder pressure.
Technical Paper

An Experimental Study of Gas Velocity, Flame Propagation and Pressure in a Spark Ignition Engine

1993-10-01
932702
A laser Doppler velocimeter, flame ionisation gauge and piezoelectric transducer have been used to measure two components of velocity, arrival of the flame front and pressure in the cylinder of a four-stroke spark ignition engine. The engine was operated with a sequence of five firing and ten non-firing cycles with the former having an equivalence ratio of 0.9 and giving rise to a misfire, a subsequent high-charge cycle, and three normal-charge cycles. The resulting fast- and slow-burn cycles were identified readily in terms of maximum pressure and flame-arrival times. The two-dimensional velocity vectors suggest that the flame fronts were initially spherical and subsequently distorted by the expansion of burned gas with increase in velocity fluctuations.
X