Refine Your Search

Search Results

Author:
Viewing 1 to 5 of 5
Technical Paper

Numerical Investigation of Recompression and Fuel Reforming in a SIDI-HCCI Engine

2007-07-23
2007-01-1878
Homogeneous Charge Compression Ignition (HCCI) is a combustion concept which has the potential for efficiency comparable to a DI Diesel engine with low NOx and soot emissions. However, HCCI is difficult to control, especially at low speeds and loads. One way to assist with combustion control and to extend operation to low speed and loads is to close the exhaust valve before TDC of the exhaust stroke, trapping and recompressing some of the hot residual. Further advantages can be attained by injecting the fuel into this trapped, recompressed mixture, where chemical reactions occur that improve ignitability of the subsequent combustion cycle. Even further improvement in the subsequent combustion cycle can be achieved by applying a spark, leading to a spark-assisted HCCI combustion concept.
Technical Paper

Modelling the Effect of Split Injections in Diesel Engines Using Representative Interactive Flamelets

1999-10-25
1999-01-3547
A major problem in reducing pollutant emissions from diesel engines is the soot-NOx trade-off. With the introduction of the Common-Rail injection system splitting the injection into separate pulses has become possible. Experiments using multiple injections indicated that there is the chance to shift the soot-NOx curve closer to the origin. In order to understand the underlying physical process multidimensional simulations have been carried out for a baseline as well as a split injection case using the Representative Interactive Flamelet (RIF)-Model. The computations are compared to experimental data showing good agreement for both cases. The computations as well as the experiments confirm the possibility of reducing soot with only a slight increase in NOx emissions. It is shown that soot is reduced due to a different mixing process resulting in fewer rich regions.
Technical Paper

Modeling the Combustion in a Small-Bore Diesel Engine Using a Method Based on Representative Interactive Flamelets

1999-10-25
1999-01-3550
A model based on Representative Interactive Flamelets (RIF) for simulating ignition, combustion and emissions formation in a DI diesel engine has been applied to describe the combustion process in the Ford DIATA engine. Equipped with a common-rail injection system the four-valve, turbocharged engine with a displacement of 300 cc per cylinder represents a modern HSDI small-bore diesel engine. The RIF-model offers a way of decoupling the turbulent time scales from those associated with the chemistry. The turbulent flow field was solved using the three-dimensional CFD-code KIVA 3V and the chemistry was solved in a one-dimensional flamelet code rendering profiles of species mass fractions as a function of the mixture fraction, which is a conserved scalar. This decoupling enabled a detailed reaction mechanism comprising 118 species and 557 elementary reactions to be employed without imposing a significant penalty on the computational time.
Technical Paper

Three-Dimensional Simulation of Pollutant Formation in a DI Diesel Engine Using Multiple Interactive Flamelets

1998-10-19
982459
Flamelet modeling allows the application of comprehensive chemical mechanisms, which. include all relevant chemical combustion processes that occur in a DI Diesel engine during autoignition, the burnout in the partially premixed phase, the transition to diffusive burning and formation of pollutants like NO, and soot. The highly nonlinear dependencies of the chemistry need not to be simplified, and the complete structure of the flame is preserved. Using the Representative Interactive Flamelet (RIF) model the one-dimensional unsteady set of partial differential equations is solved online with the 3-D CFD code. The flamelet solution is coupled to the flow and mixture field by the current boundary conditions (enthalpy, pressure, scalar dissipation rate). In return, the flamelet code yields the species concentrations, which are then used by the 3-D CFD code to compute the temperature field.
Technical Paper

Three-Dimensional Modeling of NOx and Soot Formation in DI-Diesel Engines Using Detailed Chemistry Based on the Interactive Flamelet Approach

1996-10-01
962057
In Diesel engines combustion proceeds essentially under partially premixed and non-premixed conditions. In this study the flamelet model for non-premixed combustion is derived and its implementation into 3-D codes is discussed. The model is capable of describing auto-ignition, the following burnout of the partially premixed phase, and the transition to diffusive burning. Flamelet modeling has the advantage of separating the numerical effort associated with the resolution of fast chemical time scales from the fluid dynamics' scales occuring in the 3-D computation of the engine combustion cycle. Three additional scalar field equations have to be solved in the 3-D engine code, while the entire chemistry consisting of up to 1000 or more chemical reactions is simultaneously treated in a separate 1-D code describing the flamelet structure. A new aspect proposed here is to use so-called RIFs (Representative Interactive Flamelets), which are solved on-line with the 3D-code.
X