Refine Your Search

Topic

Search Results

Technical Paper

Fleet Fatality Risk and its Sensitivity to Vehicle Mass Change in Frontal Vehicle-to-Vehicle Crashes, Using a Combined Empirical and Theoretical Model

2015-11-09
2015-22-0011
The objective of this study is to analytically model the fatality risk in frontal vehicle-to-vehicle crashes of the current vehicle fleet, and its sensitivity to vehicle mass change. A model is built upon an empirical risk ratio-mass ratio relationship from field data and a theoretical mass ratio-velocity change ratio relationship dictated by conservation of momentum. The fatality risk of each vehicle is averaged over the closing velocity distribution to arrive at the mean fatality risks. The risks of the two vehicles are summed and averaged over all possible crash partners to find the societal mean fatality risk associated with a subject vehicle of a given mass from a fleet specified by a mass distribution function. Based on risk exponent and mass distribution from a recent fleet, the subject vehicle mean fatality risk is shown to increase, while at the same time that for the partner vehicles decreases, as the mass of the subject vehicle decreases.
Journal Article

Forward Collision Warning Timing in Near Term Applications

2013-04-08
2013-01-0727
Forward Collision Warning (FCW) is a system intended to warn the driver in order to reduce the number of rear end collisions or reduce the severity of collisions. However, it has the potential to generate driver annoyances and unintended consequences due to high ineffectual (false or unnecessary) alarms with a corresponding reduction in the total system effectiveness. The ineffectual alarm rate is known to be closely associated with the “time to issue warning.” This results in a conflicting set of requirements. The earlier the time the warning is issued, the greater probability of reducing the severity of the impact or eliminating it. However, with an earlier warning time there is a greater chance of ineffectual warning, which could result in significant annoyance, frequent complaints and the driver's disengagement of the FCW. Disengaging the FCW eliminates its potential benefits.
Journal Article

Statistical Considerations for Evaluating Biofidelity, Repeatability, and Reproducibility of ATDs

2013-04-08
2013-01-1249
Reliable testing of a mechanical system requires the procedures used for the evaluation to be repeatable and reproducible. However, it is never possible to exactly repeat or reproduce the tests that are used for evaluation. To overcome this limitation, a statistical evaluation procedure can generally be used. However, most of the statistical procedures use scalar values as input without the ability to handle vectors or time-histories. To overcome these limitations, two numerical/statistical methods for determining if the impact time-history response of a mechanical system is repeatable or reproducible are evaluated and elaborated upon. Such a system could be a vehicle, a biological human surrogate, an Anthropometric Test Device (ATD or dummy), etc. The responses could be sets of time-histories of accelerations, forces, moments, etc., of a component or of the system. The example system evaluated is the BioRID II rear impact dummy.
Journal Article

Idealized Vehicle Crash Test Pulses for Advanced Batteries

2013-04-08
2013-01-0764
This paper reports a study undertaken by the Crash Safety Working Group (CSWG) of the United States Council for Automotive Research (USCAR) to determine generic acceleration pulses for testing and evaluating advanced batteries subjected to inertial loading for application in electric passenger vehicles. These pulses were based on characterizing vehicle acceleration time histories from standard laboratory vehicle crash tests. Crash tested passenger vehicles in the United States vehicle fleet of the model years 2005-2009 were used in this study. Crash test data, in terms of acceleration time histories, were collected from various crash modes conducted by the National Highway Traffic Safety Administration (NHTSA) during their New Car Assessment Program (NCAP) and Federal Motor Vehicle Safety Standards (FMVSS) evaluations, and the Insurance Institute for Highway Safety (IIHS).
Technical Paper

The Consequences of Average Curve Generation: Implications for Biomechanics Data

2010-11-03
2010-22-0001
One method of understanding the general mechanical response of a complex system such as a vehicle, a human surrogate, a bridge, a boat, a plane, etc., is to subject it to an input, such as an impact, and obtain the response time-histories. The responses can be accelerations, velocities, strains, etc. In general, when experiments of this type are run the responses are contaminated by sample-to-sample variation, test-to-test variability, random noise, instrumentation noise, and noise from unknown sources. One common method of addressing the noise in the system to obtain the underlying response is to run multiple tests on different samples that represent the same system and add them together obtaining an average. This functionally reduces the random noise. However, if the fundamental response of each sample is not the same, then it is not altogether clear what the average represents. It may not capture the underlying physics.
Journal Article

What's Speed Got To Do With It?

2010-04-12
2010-01-0526
The statistical analysis of vehicle crash accident data is generally problematic. Data from commonly used sources is almost never without error and complete. Consequently, many analyses are contaminated with modeling and system identification errors. In some cases the effect of influential factors such as crash severity (the most significant component being speed) driver behavior prior to the crash, etc. on vehicle and occupant outcome is not adequately addressed. The speed that the vehicle is traveling at the initiation of a crash is a significant contributor to occupant risk. Not incorporating it may make an accident analysis irrelevant; however, despite its importance this information is not included in many of the commonly used crash data bases, such as the Fatality Analysis Reporting System (FARS). Missing speed information can result in potential errors propagating throughout the analysis, unless a method is developed to account for the missing information.
Technical Paper

Using Triaxial Angular Rate Sensor and Accelerometer to Determine Spatial Orientation and Position in Impact Tests

2009-04-20
2009-01-0055
A data processing algorithm is presented for determining the spatial orientation and position of a rigid body in impact tests based on an instrumentation scheme consisting of a triaxial angular rate sensor and a trialaxial linear accelerometer. The algorithm adopts the unit quaternion as the main parameterized representation of the spatial orientation, and calculates its time history by solving an ordinary differential equation with the angular rate sensor reading as the input. Two supplemental representations, the Euler angles and the direction cosine matrix, are also used in this work, which provide an intuitive description of the orientation, and convenience in transforming the linear accelerometer output in the instrumentation frame to the global frame. The algorithm has been implemented as a computer program, and a set of example impact tests are included to demonstrate its application.
Technical Paper

Effects of Different Vehicle Parameters on Car to Car Frontal Crash Fatality Risk Estimated through a Parameterized Model

2006-04-03
2006-01-1134
For the purposes of analyzing and understanding the general effects of a set of different vehicle attributes on overall crash outcome a fleet model is used. It represents the impact response, in a one-dimensional sense, of two vehicle frontal crashes, across the frontal crash velocity spectrum. The parameters studied are vehicle mass, stiffness, intrusion, pulse shape and seatbelt usage. The vehicle impact response parameters are obtained from the NCAP tests. The fatality risk characterization, as a function of the seatbelt use and vehicle velocity, is obtained from the NASS database. The fatality risk is further mapped into average acceleration to allow for evaluation of the different vehicle impact response parameters. The results indicate that the effects of all the parameters are interconnected and none of them is independent. For example, the effect of vehicle mass on fatality risk depends on seatbelt use, vehicle stiffness, available crush, intrusion and pulse shape.
Technical Paper

Simple Models for Analysis of Curb- and Soil-trip Rollover Events

2006-04-03
2006-01-0722
Simple rigid body dynamics models are created to analyze the curb- and soil-trip types of rollover events and experimental methods that are used to simulate these events. Equations for the models are given, and they are integrated numerically to obtain the solution. Solutions of the models provide a break down of the energy during these events, which exposes the importance of energy absorption, unloading, and friction during the impact-and-roll process. Furthermore, the models are used to derive the critical sliding velocity under different test parameters. They are also used to understand near-critical state responses of the vehicle, and the corresponding characteristics of the signals in the phase space.
Technical Paper

Considerations of Bio-fidelity Corridors for Lateral Impacts

2005-04-11
2005-01-0308
Developing an effective side impact ATD for assessing vehicle impact responses requires a method for evaluating that ATD's bio-fidelity. ISO/TR9790 has been in existence for some years to serve that purpose. Recently, NHTSA sponsored a research project on the post-mortem human subjects (PMHS) responses subjected to side impact conditions. Based on those newly available PMHS data, Maltese generated a new approach for creating bio-fidelity corridors for human surrogates. The approach incorporates the time factor into the evaluation equation and automates the process (Maltese et al. 2002). This paper serves as the first attempt to look closely at the new bio-fidelity corridor generation process (hereafter referred as the Maltese approach) with respect to its validity, effectiveness, as well as its practicality. The effect of mass scaling was first examined in order to ensure the integrity of the data. The time alignment scheme and the formation of the corridors were then tested.
Technical Paper

Vehicle Mass and Stiffness: Search for a Relationship

2004-03-08
2004-01-1168
The effects of vehicle “stiffness” and mass on the occupant response during a crash may be determined by evaluation of accident data. However, “stiffness” and mass may be correlated, making it difficult to separate their effects. In addition, a single-valued “stiffness”, although well defined for linear case, is not well defined for non-linear systems, such as in vehicle crash, making the separation task even more difficult. One approach to addressing the lack of a clear definition of stiffness is to use multiple definitions. Each stiffness definition can then be correlated with mass to look for trends. In this study, such an approach was taken, and the different stiffness definitions were given and their values were obtained from rigid barrier crash test data. No clear relationship between mass and stiffness appears to exist. All the stiffness measures reviewed show, at best, only a weak correlation with mass. A stiffness analysis among different vehicle types was also carried out.
Technical Paper

An Impact Pulse-Restraint Energy Relationship and Its Applications

2003-03-03
2003-01-0505
This paper presents an energy relationship between vehicle impact pulses and restraint systems and applies the relationship to formulations of response factors for linear and nonlinear restraints. It also applies the relationship to derive optimal impact pulses that minimize occupant response for linear and nonlinear restraints. The relationship offers a new viewpoint to impact pulse optimization and simplifies the process mathematically. In addition, the effects of different vehicle impact pulses on the occupant responses with nonlinear restraints are studied. Finally, concepts of equivalent pulses and equal intensity pulses are presented for nonlinear restraints.
Technical Paper

Repeatability Evaluation of the Pre-Prototype NHTSA Advanced Dummy Compared to the Hybrid III

2000-03-06
2000-01-0165
A comparison of the NHTSA advanced dummy and the Hybrid III is presented in this paper based on their performance in repeated sled tests under 3 different restraint systems. The restraint systems considered are: the airbag alone, the 3-point belt alone, and a combined use of the airbag and the 3-point belt. Various time-histories pertaining to accelerations, angular velocities, deflections and forces have been compared between the two dummies in order to study their repeatability. The Hybrid III appears to be more repeatable than the NHTSA advanced dummy in its response in one case, that of restraint with the 3-point belt alone. The response of the NHTSA advanced dummy in other two restraint modes, the airbag alone and the combination of 3-point belt and airbag, appears to be no less repeatable than that of Hybrid III in this series of tests.
Technical Paper

A Data-Based Model of the Impact Response of the SID

2000-03-06
2000-01-0635
A simple spring-mass model of the impact response of the side impact dummy (SID) is established. The spring and mass constants of the model are established through system identification methodology based on data from impact tests. The tests are performed in laboratory with hydraulically driven impactors impacting the chest and pelvis of the SID. The input data to the model consist of measured contact force or impactor velocity time histories, and the output data are accelerations on the rib, spine, and pelvis of the SID. The established model appears to predict the test results with reasonable accuracy. The main purpose of this study, however, is to use this simple model to carry out parametric studies of the response of the dummy with changing impact parameters, the result of which would be useful in understanding vehicle crash tests using the SID.
Technical Paper

Data-Based Models for Spine Acceleration Response of the Side Impact Dummy

1999-10-10
99SC07
The response of the spine acceleration to rib and pelvis acceleration input of the side impact dummy (SID) is modeled using system identification methods. The basis for the modeling is a simplified representation of the SID by a 3-mass, 2-spring system. Based on this spring-mass representation, two types of response models are established. The first is a "gray-box" type with rib/pelvis-spine relationship modeled by Auto Regression with eXogeneous (or eXtra) input (ARX) type system models. The structure of these models is partially based on the spring-mass simplified representation, hence the notion "gray- box." The parameters of these models are identified through linear regression from test data. The second type of models is noted "physical model" here, since it is strictly a state- space form of the equation of motion of the simple spring-mass representation.
Technical Paper

Use of a Kalman Filter to Improve the Estimation of ATD Response During Impact

1999-03-01
1999-01-0707
A new approach for improving estimates of the kinematic response of ATDs (anthropomorphic test devices) to vehicle crash events has been developed. This approach employs the Kalman Filter; a state model based estimation approach that has been widely applied to system dynamics problems ranging from navigation to missile guidance. The Kalman Filter approach combines measurements of crash event phenomena (acceleration and displacement), kinematic models of ATD behavior and statistics of sensor noise to create precise estimates of ATD motion during a crash. This paper presents an implementation of a state model and Kalman Filter for a sensor data collected from the chest of an ATD during an out-of-position airbag deployment test. Favorable comparisons are made between the Kalman Filter model approach and traditional methods involving numerical integration and differentiation.
Technical Paper

Physical Reality in FE Head Models: Rotation and Strain

1998-02-23
980355
The object of this paper is to highlight the potential limitations of numerical procedures and the need to capture the relevant physics in the FEA models for head impact studies. This is accomplished through a discussion on stress update objectivity, which assumes particular importance because it affects the accuracy of stress and strain calculations when large displacements associated with rotations, as seen in head impacts, are involved. Inaccurate stress and strain results will also result due to material rotation if the objectivity is not maintained.
Technical Paper

Estimation of Occupant Position from Probability Manifolds of Air Bag Fire-times

1998-02-23
980643
This paper outlines a method for estimating the probablistic nature of airbag crash sensor response and its effect on occupant position. Probability surfaces of airbag fire times are constructed for the impact velocities from 0 to 40 mph. These probability surfaces are obtained by using both frontal offset deformable barrier and frontal rigid barrier crash data. Another probability surface of displacement is constructed to estimate the occupant displacement time history before airbag deployment. This probability surface is constructed by using the initial occupant seating position data and the vehicle impact velocity and deceleration data. In addition, the probability of airbag firing at a given crash velocity is estimated from NASS-CDS, frontal offset and rigid barrier crash data.
Technical Paper

Cavitation During Head Impact

1997-02-24
970390
The effects of stress in brain material was investigated with experimental and computational idealizations of the head. A water-filled cylinder impacted by a free traveling mass serves to give insight into what could happen to the brain during impact. Under an impact of sufficient velocity, cavitation can occur on the cylinder boundary opposite impact. Limited internal vaporization of the fluid may also occur during severe impact events. Cavitation occurred in these experiments at accelerations greater than 150 g's. Head forms of different sizing will experience an acceleration magnitude inversely proportional to the size difference to produce a similar pressure/cavitation response.
Technical Paper

COMPARISON OF THE PRE-PROTOTYPE NHTSA ADVANCED DUMMY TO THE HYBRID III

1997-02-24
971141
A comparison of the NHTSA advanced dummy and the Hybrid III is presented in this paper based on their performance in twenty four frontal impact sled tests. Various time histories pertaining to accelerations, angular velocities, deflections and forces have been compared between the two dummies in light of their design differences. This has lead to some understanding about the differences and similarities between the NHTSA advanced dummy and the Hybrid III. In general, the chest as well as the head motion in the NHTSA advanced dummy are greater. The lumbar moments in the NHTSA advanced dummy are lower than that in the Hybrid III. The upper and lower spine segments in the NHTSA advanced dummy, generally rotate more than the spine of the Hybrid III.
X