Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

FSAE suspension development in virtual environment

2018-09-03
2018-36-0231
Through Adams/Car software, it was developed a complete template of a double wishbone suspension with a single shock absorber per axle for a formula SAE prototype. With this template it is intended to perform a series of simulations to test its kinematics and dynamics in the situations which the vehicle will be submitted at the competition, then the shock absorber’s parameters, double wishbone geometries, camber, caster, toe and kingpin inclination can be improved, validating the system viability and getting a higher performance.
Technical Paper

From Embedded Systems (ES) to Cyber-Physical Systems (CPS): An Analysis of Transitory Stage of Automotive Manufacturing in the Industry 4.0 Scenario

2016-10-25
2016-36-0230
Automotive industries are undergoing a transformation of their manufacturing systems. Called by the German government as Industrie 4.0, this transformation is based on the evolution of traditional Embedded Systems-ES to Cyber-Physical Systems-CPS. In the next years such evolution will have to reach transitory stages, where ES and CPS should coexist for a determined period of time (ES-CPS). Based on this projection, this work compares ES with CPS, identifies the main differences between these systems and thus forms a transitory stage of automotive manufacturing for the next years. The work is structured as follows: Introduction section places the reader on the treated subject and presents the methodology of the work. Later, Industrie 4.0, Embedded Systems (ES) and Cyber-Physical systems (CPS) are defined. Once this is done, the analysis of ES-CPS transition is finished. Analysis results are presented and a representation of ES-CPS transition is proposed.
Technical Paper

Usage of Digital Factory in the Analysis of Automotive Production Scenarios: Available Software and Resources

2014-09-30
2014-36-0329
The Digital Factory (DF) can be defined as a set of computational software applied in the manufacturing design, development, implementation and operation. The goal of this work is to investigate DF's available resources in the analysis of workforce and machinery required for changes in the production scenarios in a determined automobile model. Therefore, a theoretical framework is developed. Afterwards, there is an investigation of the resources available for this application, actually commercialized by the three main software supply companies for DF. The results of the research are presented and discussed. Suggestions for future developments are identified, and the work is finished with the pertinent considerations.
Technical Paper

Implementation of ABS System on an Existing Heavy Trucks Line-up in Accordance to Brazilian Resolution No. 312/09 (CONTRAN)

2012-10-02
2012-36-0466
The automotive industry has been increasingly researching and working on improving vehicle and passenger safety over the years. Following countries such as the United States and European Union, the Brazilian government has been publishing many resolutions with the objective of improving the safety of their fleet. With the publication of resolution 312 from CONTRAN (National Traffic Counsel), on April 3rd, 2009, the installation of ABS (Anti-lock Brake System) feature has become mandatory for all car and truck models to be sold in Brazil, following a staggered implementation starting on January 1st, 2010. The ABS system adds to the vehicle's current brake system, not allowing the wheels to lock during braking, which helps preserve the vehicle's stability and improve its safety, thus avoiding accidents. The technology, which is already available in a few car models, is not yet developed for the heavy trucks applications in this market.
Technical Paper

Proposal of Technical Interface among Product Engineering, Manufacturing Engineering and Production Engineering, as an Aid to Automotive Product Development Process

2012-10-02
2012-36-0577
Concurrent engineering principles have been almost universally adopted as the ideal solution to the reduction in time for products development. Even with concurrency practice, the lack of interaction among the professionals is still present in some stages of the product development process (PDP). This lack of interaction, or gap, may be observed in the three macro-phases of PDP: macro-phase of product strategy (PS); macro-phase of product and process development (PPD); macro-phase of production and continuous improvement (PCI). The present work aims to propose a methodology, denominated Technical Interface (TI), as an aid to automotive product development process (Automotive-PDP). This methodology can contribute to the engineering departments in charge of PS; PPD and PCI for the update and preservation of technical information about product; process, and production, during all the Automotive-PDP.
Technical Paper

Rapid Prototyping Applied to Parts Used in Static Tests of Racks for Packing and Transporting Automobile Parts

2007-11-28
2007-01-2690
This work was motivated by the specific needs of a materials flow and packing planning sector (PFME), within a manufacturing engineering department of a vehicle assembly company in Brazil. In this sector, there is a growing need to obtain prototype parts in the shortest time and at the lowest cost possible in order to carry out static prototype tests of the special packing and transportation racks used in this company, since these racks need to be ready to assist the preparation phase of the series production of the vehicle. The objective of this work is to survey the academic theory and the existing literature in order to find an application proposal of rapid prototyping (RP) techniques to make the parts used in the rack tests, thus reducing time and acquisition costs.
X