Refine Your Search

Search Results

Author:
Viewing 1 to 5 of 5
Technical Paper

Exhaust Gas Aftertreatment for Lean Gasoline Direct Injection Engines - Potential for Future Applications

2013-04-08
2013-01-1299
Future emission standards will require further reduction of harmful gaseous emissions such as HC, CO and NOx as well as consideration for greenhouse gas emissions such as CO₂. Gasoline engines with lean combustion spray-guided direct fuel injection in conjunction with turbocharging have a very high potential for fuel savings. The main challenge for stratified lean GDI aftertreatment systems is the development of a catalyst system to fulfill the emission legislation requirements under low exhaust temperature operating conditions with efficient use of precious metals. In addition to the very stringent emission legislation another challenge for the introduction of lean gasoline engines in North America is the higher sulfur content of the fuel compared to Europe. In this paper exhaust gas aftertreatment requirements for stratified gasoline direct injection engines will be discussed and the latest advances in catalyst and system development will be shown.
Technical Paper

Bluetec Emission Control System for the US Tier 2 Bin 5 Legislation

2008-04-14
2008-01-1184
While the market share for diesel engines for LD vehicles in Europe has grown continuously in the past years, the market share in North America is still negligible. Until now, it has been possible to fulfill the limits for nitrogen oxides (NOx) both in Europe and in North America by engine measures alone, without using an active NOx aftertreatment system. With the introduction of Tier II Bin 8 and Tier II Bin 5 emissions legislation in the US in 2007, most new diesel applications will now require NOx aftertreatment. One of the possible technologies for the reduction of nitrogen oxides in lean exhaust gas is the NOx storage catalyst which has become the generally-accepted choice for engines with gasoline direct injection systems and which is also utilized in the current diesel Bluetec I systems from Daimler. For heavier applications urea-SCR is the preferred technology to fulfill NOx legislation limits.
Technical Paper

Catalyst Temperature Rise during Deceleration with Fuel Cut

2006-04-03
2006-01-0411
Automotive catalysts close coupled to gasoline engines operated under high load are frequently subjected to bed temperatures well above 950 °C. Upon deceleration engine fuel cut is usually applied for the sake of fuel economy, robustness and driveability. Even though catalyst inlet gas temperatures drop down immediately after fuel cut - catalyst bed temperatures may rise significantly. Sources for catalyst temperature rise upon deceleration with fuel cut are discussed in this contribution.
Technical Paper

Investigation of Post Oxidation and Its Dependency on Engine Combustion and Exhaust Manifold Design

2002-03-04
2002-01-0744
In response to ever more stringent emission limits (EURO IV, SULEV), engine developers are increasingly turning their attention to engine start-up and warm-up phases. Since in this phase the catalytic converter has not yet reached its operating temperature, problems occur especially with regard to hydrocarbon emissions (HC) which are emitted untreated. Secondary air injection represents one option for heating up the catalytic converter more quickly. The engine is operated during the heating up cycle with retarded ignition angles and a rich mixture. Ambient air (secondary air) is injected close to the exhaust valve seat. During the spontaneously occurring post oxidation phase, the reactive exhaust components ignite and heat up the catalytic converter while simultaneously reducing HC. The various processes which affect the post oxidation, are not well known up to now. In order to achieve concrete improvements, detailed knowledge of its influences are necessary.
Technical Paper

The Knocking Syndrome - Its Cure and Its Potential

1998-10-19
982483
In his paper “The Knock Syndrome - its Cures and its Victims” (SAE 841339) Oppenheim proposed to change the whole process of the internal combustion engine replacing moving flames by homogeneous and simultaneous combustion. Intensive research work on flame propagation and auto-ignition phenomena led to new insights into combustion over recent years. The implementation of auto-ignition on two-stroke S.I. engines revealed the potential for simultaneous reductions in fuel consumption and NOx emission. Deploying the principle for the four-stroke piston engine and standard fuel would provide optimum conditions for application in common vehicles. The basic problem of homogeneous combustion is presented and some options of control are discussed. A methodology is proposed to apply a new type of combustion simply through a consistent combination of modern technology available for the S.I. engine.
X