Viewing 1 to 7 of 7
Technical Paper
David V. Spitzley, Hyung Chul Kim, Gregory A. Keoleian, Darby E. Grande
In 1998 the United States Automotive Materials Partnership published the life cycle inventory of a generic US family sedan. Several years later, researchers at the University of Michigan expanded this analysis to consider the dynamic replacement decisions over the vehicle lifetime that would optimize energy and emissions performance of generic family sedan ownership. The present study provides further analysis of this vehicle by examining the life cycle cost profile for generic sedan ownership and determining the optimal replacement intervals for this vehicle based on economics. Life cycle cost for a generic vehicle was estimated as $0.37/mile for a ten year life cycle and $0.31/mile for a twenty year life cycle. This study found that while less than 10% of the generic vehicle life cycle energy (20 year) is consumed during material production and manufacturing, 43% of the total life cycle cost is associated with vehicle purchase and depreciation.
Technical Paper
Vanessa M. Smith, Gregory A. Keoleian, Ronald L. Williams, Scott T. Chubbs
A life cycle inventory (LCI) study evaluates the environmental performance of the ULSAB-AVC (UltraLight Steel Auto Body - Advanced Vehicle Concepts) vehicle product system. The LCI quantifies the inputs and outputs of each life cycle stage of the ULSAB-AVC PNGV-gas engine vehicle (998 kg) over the 193,000 km service lifetime of the vehicle. The use phase of the ULSAB-AVC PNGV-diesel engine variant (1031 kg) is also quantified. The data categories measured for each life cycle phase include resource and energy consumption, air and water pollutant emissions, and solid waste production. The ULSAB-AVC LCI study is based on the methods, model and data from the 1999 study by the United States Automotive Materials Partnership (USAMP), a consortium within the United States Council for Automotive Research. This model was modified to represent the ULSAB-AVC PNGV-gas engine vehicle for each life cycle phase as well as the use phase of the PNGV-diesel engine variant.
Technical Paper
Hyung Chul Kim, Gregory A. Keoleian, Sabrina Spatari, Jonathan W. Bulkley
A novel application in the field of Life Cycle Assessment is presented that investigates optimal vehicle retirement timing and design life. This study integrates Life Cycle Energy Analysis (LCEA) with Dynamic Replacement Modeling and quantifies the energy tradeoffs between operating an older vehicle versus replacing it with a new more energy efficient model. The decision to keep or replace a vehicle to minimizes life cycle energy consumption is influenced by several factors including vehicle production energy, current vehicle's fuel economy and its deterioration with age, the improvement in fuel economy technology of new model vehicles and annual vehicle miles traveled (VMT). Model simulations explore vehicle replacement under incremental improvements in vehicle technology and leapfrog technology improvements such as with the PNGV (Partnership for a New Generation of Vehicles).
Technical Paper
Gregory A. Keoleian, Geoffrey McD. Lewis, Remi B. Coulon, Vincent J. Camobreco, Helene P. Teulon
While the results are generally the most exciting aspects of an LCI study, the details of the LCI model that generates the results are equally significant; particularly when modeling the life cycle of an automobile. The modeling challenges faced in conducting the US AMP LCI of a mid-sized vehicle based on the 1995 Lumina, Intrepid and Taurus are highlighted. The number of parts (over 20,000), supply chain complexity, materials composition, and the demanding set of OEM requirements for model features required special LCI methods and solutions. The LCI model and selected results are compared with previous studies, and recommendations for improvements in the USAMP LCI model are also provided. This paper is one of six SAE publications discussing the results and execution of the USCAR AMP Generic Vehicle LCI. The papers in this series are (Overview of results 982160, 982161, 982162, 982168, 982169, 982170).
Technical Paper
Robert D. Stephens, Ronald L. Williams, Gregory A. Keoleian, Sabrina Spatari, Robb Beal
Federal standards that mandate improved fuel economy have resulted in the increased use of lightweight materials in automotive applications. However, the environmental burdens associated with a product extend well beyond the use phase. Life cycle assessment is the science of determining the environmental burdens associated with the entire life cycle of a given product from cradle-to-grave. This report documents the environmental burdens associated with every phase of the life cycle of two fuel tanks utilized in full-sized 1996 GM vans. These vans are manufactured in two configurations, one which utilizes a steel fuel tank, and the other a multi-layered plastic fuel tank consisting primarily of high density polyethylene (HDPE). This study was a collaborative effort between GM and the University of Michigan's National Pollution Prevention Center, which received funding from EPA's National Risk Management Research Laboratory.
Technical Paper
Gregory A. Keoleian, Jeff S. McDaniel
The U.S. EPA initiated the Common Sense Initiative (CSI) to develop “Cleaner, Cheaper, Smarter” environmental policy and management practices. This paper addresses the application of life cycle design and assessment tools to automotive instrument panels (IP) as part of the Automotive Manufacturing Sector CSI pilot project investigation. For this study, an “average IP” was modeled based on the instrument panels of three mid-sized U.S. car models: 1995 Chevrolet Lumina, 1996 Dodge Intrepid and 1996 Ford Taurus. This “average IP” consisted of seventeen different materials and weighed over 22 kg (49 lbs.). A life cycle inventory analysis was conducted to evaluate the environmental burdens associated with materials production, manufacturing, use, and retirement. A thorough evaluation of solid waste production and energy consumption was completed and partial inventories of air emission and water effluent releases were also conducted.
Technical Paper
Gregory A. Keoleian
The life cycle design framework developed at the University of Michigan was applied by AlliedSignal to improve the manufacture, use, and end-of-life management of automobile oil filters. Three oil filter designs were investigated: a conventional spin-on filter which is a single-use product, a cartridge filter consisting of a reusable housing and a replacement cartridge, and a cleanable design which uses a reusable housing and cleanable filter element. Environmental, cost, performance, and legal requirements were developed using a matrix tool and tradeoffs between these requirements were studied. These design criteria are presented along with results from an analysis of user life cycle costs and a simplified life cycle energy analysis. Key elements of the life cycle design framework, which is based on systems analysis, multiobjective analysis, and multistakeholder participation, are also described.
Viewing 1 to 7 of 7