Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

A New Test Method to Characterize the Behaviour of Hydraulic Damper

2010-09-28
2010-32-0101
Typically the velocity dependent hydraulic damper characterization is done using a sinusoidal input to the damper. Damping force vs. displacement and velocity plots are used to represent the damping behaviour. It was observed that the dampers exhibit equal damping characteristics using this conventional method, shows a significant difference in ride comfort levels of the vehicle. This behaviour primarily arises due to the variation in response of the damper with the excitation frequency. On actual riding conditions, apart from harmonic loads, the suspension experiences impact loads that affect the damping generation characteristics. So the damper also needs to be characterized with variation of frequency ranging from 0.5 Hz to 25 Hz. Due to the limitations of damper stroke and input frequency, complete characterization of damper is not possible with sinusoidal input test rig.
Technical Paper

FE Based Steering Bearing Design Optimization for Angular Contact Ball Bearings

2016-11-08
2016-32-0025
In two wheelers the front suspension system is mounted on chassis by two steering bearings which are lubricated ball type angular contact bearings with significant radial force components. These bearings are designed to withstand maximum vehicle loads for target durability. Maximum load carrying capacity depends on the number and size of the balls, bearing size and material. For target durability with designed load carrying capacity, the ball contact pressure, bearing preload plays a major role as compared to other design parameters. Geometry parameters and maximum load defines contact pressure for given bearing design. But in two wheelers due to nature of usage and road conditions, the peak loads are dynamic and geometry based design calculations may not yield the most optimal bearing design. In this work the bearing ball race profile design is optimized by using dynamic bearing contact profiles by using nonlinear Finite Element Analysis.
Technical Paper

Effect of Thickness Ratio on Fatigue and FEA Life Estimation Criteria in Welded Structures

2015-11-17
2015-32-0717
The welded structures have a broad applicability in automotive industry. The welding being an assembled process, presents both advantages and disadvantages for the two wheeler motor structure. A simple existing defect after welding can generate a catastrophic fracture. Recently all major fabricated structures in two wheelers are optimized by Computer Aided Engineering - Finite Element Analysis techniques to meet the constricted weight to strength and stiffness targets. Local reinforcements in the main structure with unequal member thickness are playing major role to meet these requirements. Various critical parameters which affect the weld structure life are not being modeled in FE analysis to minimize the modeling complexity and computation times.
X