Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

The Impact of Injection Strategies on Emissions Reduction and Power Output of Future Diesel Engines

2008-04-14
2008-01-0941
Future light, medium and heavy duty diesel engines will need to satisfy the more stringent emission levels (US 2014, Euro 6, etc.) without compromising their current performance and fuel economy, while still maintaining a competitive cost. In order to achieve this, the Fuel Injection Equipment (FIE) together with the pressure charging, cooling system, exhaust after treatment and other engine sub-systems will each play a key role. The FIE has to offer a range of flexible injection characteristics, e.g. a multiple injection train with or without separation, modulated injection pressures and rates for every injection, higher specific power output from the same injector envelope, and close control of very small fuel injection quantities. The aim of this paper is to present Delphi's developments in fuel injection strategies for light and medium duty diesel engines that will comply with future emission legislation, whilst providing higher power density and uncompromised fuel economy.
Technical Paper

Advanced hybrid electronic unit injector with accumulator for enhanced multiple injection and ultra high injection pressure capability

2007-07-23
2007-01-1895
In order to meet new worldwide emission regulations for heavy-duty diesel engines and to provide high specific power output without fuel consumption penalties there is a requirement for the fuel injection system to have a flexible choice of injection characteristics. Such a fuel injection system has to provide multiple injections, modulated injection pressures and rates for every injection, and possibly variable spray cone angle to accommodate early injection without wall wetting whilst maintaining conventional injection for rated power. The aim of this paper is to present the advanced hybrid electronic unit injector system (EUI). This system incorporates an accumulator rail, which enables high pressure multiple injection events at different injection pressures for a very wide range of injection timings that would not normally be achievable using a conventional EUI system and single lobe EUI camshaft.
Technical Paper

Advanced Two-Actuator EUI and Emission Reduction for Heavy-Duty Diesel Engines

2003-03-03
2003-01-0698
A very flexible choice of fuel injection characteristics can be obtained with an advanced electronic unit injector that has been developed with two electronically controlled valves. Single-cylinder engine tests have demonstrated the potential of this advanced EUI system for a heavy-duty diesel engine. Substantial increases in injection pressure can be programmed electronically at individual engine speed/load conditions, compared with a baseline EUI system, to provide much faster rates of air/fuel mixing. Simulated US and European emissions cycle results, with the optimised two-actuator EUI and EGR, show substantially improved soot particulate versus NOx results and lower BSFC compared with a baseline EUI result. A high-pressure post injection has the potential to give further soot reduction.
Technical Paper

Contribution of EUI-200 and Quiescent Combustion System Towards US94 Emissions

1993-03-01
930274
Results are presented for basic combustion optimisation work with an EUI system on a single-cylinder pressure-charged diesel engine with a near quiescent combustion system. A substantial improvement in the particulate/NOx trade-off was achieved by reduction of spray hole diameter, increase of injection pressure and a longer injection period. Analysis of the injection and heat release diagrams shows how the reduction of soot particulate was achieved by an increase of injection pressure with reduction of spray hole diameter. The tendency for NOx to increase was minimised by the longer injection period. The lowest air swirl gave the best results and further reductions in emissions were achieved by improvements to the nozzle and the EUI system. Steady-state simulation-cycle emission results show that with an injection pressure of 1800 bar, a low soot particulate of 0.024 g/bhp h is achieved and the total calculated particulate and NOx is within the US 94 limits for heavy-duty trucks.
X