Refine Your Search

Search Results

Author:
Viewing 1 to 5 of 5
Technical Paper

Rapid Development of an Autonomous Vehicle for the SAE AutoDrive Challenge II Competition

2024-04-09
2024-01-1980
The SAE AutoDrive Challenge II is a four-year collegiate competition dedicated to developing a Level 4 autonomous vehicle by 2025. In January 2023, the participating teams each received a Chevy Bolt EUV. Within a span of five months, the second phase of the competition took place in Ann Arbor, MI. The authors of this contribution, who participated in this event as team Wisconsin Autonomous representing the University of Wisconsin–Madison, secured second place in static events and third place in dynamic events. This has been accomplished by reducing reliance on the actual vehicle platform and instead leveraging physical analogs and simulation. This paper outlines the software and hardware infrastructure of the competing vehicle, touching on issues pertaining sensors, hardware, and the software architecture employed on the autonomous vehicle. We discuss the LiDAR-camera fusion approach for object detection and the three-tier route planning and following systems.
Technical Paper

Development of a Miller Cycle Powersports Engine

2014-11-11
2014-32-0090
Operation of snowmobiles in national parks is restricted to vehicles meeting the Best Available Technology standard for exhaust and noise emissions as established by the National Parks Service. An engine exceeding these standards while operating on a blend of gasoline and bio-isobutanol has been developed based on a production four-stroke snowmobile engine. Miller cycle operation was achieved via late intake valve closing and turbocharging. The production Rotax ACE 600cc 2 cylinder engine was modeled using Ricardo WAVE. After this model was validated with physical testing, different valve lift profiles were evaluated for brake specific fuel consumption and brake power. The results from this analysis were used to determine a camshaft profile for Miller cycle operation. This was done to reduce part load pumping losses and increase engine efficiency while maintaining production power density.
Technical Paper

The Effect of a TiO2 Coating with the Addition of H2 Gas on Emissions of a Small Spark-Ignition Engine

2014-11-11
2014-32-0034
This study looks at the application of a titanium dioxide (TiO2) catalytic nanoparticle suspension to the surface of the combustion chamber as a coating, as well as the addition of hydrogen gas to a four-stroke spark-ignited carbureted engine as a possible technique for lowering engine-out emissions. The experiments were conducted on two identical Generac gasoline powered generators using two, four and six halogen work lamps to load the engine. One generator was used as a control and the second had key components of the combustion chamber coated with the catalytic suspension. In addition to the coating, both engines were fed a hydrogen and oxygen gas mixture and tested at low, medium and high loads. Using an unmodified engine as a control set, the following three conditions were tested and compared: addition of hydrogen only, addition of coating only, and addition of hydrogen to the coated engine.
Technical Paper

Clutchless Shifting of an Automated Manual Transmission in a Hybrid Powertrain

2011-09-13
2011-01-2194
The normal approach to shifting a manual transmission in a vehicle includes a clutch which connects the engine to the transmission. When shifting, the relative speed of the engine and wheels changes. The transmission is disconnected from the engine with the clutch and the gears in the transmission are pressed together until they engage. There are small friction synchronizers inside the transmission, but these are only designed for the inertia of the gears and the clutch pressure plate. The clutch is required to synchronize the transmission speed with the engine speed after a shift, and to remove the load from the transmission before a shift. Described is a method for automating a manual transmission hybrid-electric powertrain which doesn't require a clutch. A hybrid drivetrain including an electric motor and a combustion engine has the benefit of much better speed and torque control than a combustion engine alone.
Technical Paper

Emission Tests of Diesel Fuel with NOx Reduction Additives

1993-10-01
932736
In this paper results are given from single-cylinder, steady-state engine tests using the Texaco Diesel Additive (TDA) as an in-fuel emission reducing agent. The data include NOx, total unburned hydrocarbons, indicated specific fuel consumption, and heat release analysis for one engine speed (1500 RPM) with two different loads (Φ ≈ 0.3, IMEP = 0.654 MPa and Φ ≈ 0.5, IMEP = 1.006 MPa) using the baseline fuel and fuels with one percent and five percent additive by weight. The emissions were measured in the exhaust stream of a modified TACOM-LABECO single cylinder engine. This engine is a 114 mm x 114 mm (4.5″ x 4.5″) open chamber low swirl design with a 110.5 MPa (16,000 psi) peak pressure Bosch injector. The injector has 8 holes, each of 0.2 mm diameter. The intake air was slightly boosted (approximately 171 kPa (25 psia)) and slightly heated (333 K (140 °F)). In previous research on this engine the emissions, including soot, were well documented.
X