Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

A Discussion on the Standard SAE-ARP-4754A and a Proposal for Using it in Product Certification and Qualification of Staff

2012-10-02
2012-36-0572
Systems such as satellites, aircrafts, automobiles and air traffic controls are becoming increasingly complex and/or highly integrated, as prescribed by the standard SAE-ARP 4754A Standard. They integrate many technologies and they work in very demanding environments, sometimes with little or no maintenance, due to the severe conditions of operation. To survive such harsh operating conditions, they require very high levels of dependability, to be reached by a diversity of approaches, processes, components, etc. Some are suggested by the SAE-ARP-4754A as one of the highest level standards to be met. So, it is important to know it and its consequences for product and staff deeply. The aim of this paper is to present: a discussion on the standard SAE-ARP-4754A and a proposal for using it in product certification and qualification of staff.
Technical Paper

Current Trends Driving the Aerospace and Automotive Systems Architectures

2011-10-04
2011-36-0387
In this work we discuss current trends driving the aerospace and automotive systems architectures. This includes trends as: 1) pos-globalization and regionalization; 2) the formation of knowledge oligopolies; 3) commonality, standardization and even synergy (of components, tools, development process, certification agents, standards); 4) reuse and scalability; 5) synergy of knowledge and tools convergence; 6) time, cost and quality pressures and innovation speed; 7) environmental and safety issues; and 8) abundance of new technologies versus scarcity of skilled manpower to apply them.
Technical Paper

Simulation Architechtures and Standards: Their Characteristics and Applications to the Simulation and Control of Aerospace Vehicles

2008-10-07
2008-36-0271
In this work we discuss some types of simulation architectures and standards, their characteristics and applications to the simulation and control of aerospace vehicles. This includes: the basic definitions, types and characteristics of simulators and simulations (physical, computational, hybrid, etc.; discrete events, discrete time, continuous time, etc; deterministic, stochastic, etc.) their basic compromise (simplicity x fidelity), their man-machine interfaces and interactions (virtual, constructive, live, etc.), their evolution law (time, events, mixed, etc.), their architectures (“stand-alone”, PIL, HIL, MIL, DIS, HLA, etc.), their standards (OMBA, SIMNET, ALSP, DIS, HLA 1.3, HLA 1516, ASIA, AP2633, etc.) and their applications to the simulation and control of aerospace vehicles. This is illustrated by some examples driven from the aerospace industry
Technical Paper

Simulation Environments and Laboratories: Their Characteristics and Applications to the Simulation and Control of Aerospace Vehicles

2004-11-16
2004-01-3415
In this work we discuss some types of simulation environments and laboratories, their characteristics and applications to the simulation and control of aerospace vehicles. This includes: the basic definitions, types and characteristics of simulators and simulations (physical, computational, hybrid, etc.; discrete events, discrete time, continuous time, etc; deterministic, stochastic, etc.) their basic compromise (simplicity × fidelity), their man-machine interfaces and interactions (virtual, constructive, live, etc.), their evolution law (time, events, mixed, etc.), their architectures (“stand-alone”, PIL, HIL, MIL, DIS, HLA, etc.), and especially, their environments (discrete, continuous, hybrid, etc.) and laboratories (physical, computational, hybrid, etc.), and their applications to the simulation and control of aerospace vehicles. This is illustrated by some examples driven from the aerospace industry.
Technical Paper

Simulators and Simulations: their Characteristics and Applications to the Simulation and Control of Aerospace Vehicles

2003-11-18
2003-01-3737
In this work we discuss some types of simulators and simulations, their characteristics and applications to the simulation and control of aerospace vehicles. This includes: the basic definitions, types and characteristics of simulators and simulations (physical, computational, hybrid, etc.; discrete events, discrete time, continuous time, etc; deterministic, stochastic, etc.) their basic compromise (simplicity × fidelity), their man-machine interfaces and interactions (virtual, constructive, live, etc.), their evolution law (time, events, mixed, etc.), their architectures (“standalone”, PIL, HIL, MIL, DIS, HLA, etc.), their environments (discrete, continuous, hybrid, etc.) and their applications to the simulation and control of aerospace vehicles. This is illustrated by some examples driven from the aerospace industry
X