Refine Your Search

Search Results

Author:
Viewing 1 to 18 of 18
Technical Paper

The FAE Electrolyser Flight Experiment FAVORITE: Final Design and Pre-flight Ground Test Results

2005-07-11
2005-01-2809
FAVORITE (Fixed Alkaline Electrolyte Electrolyser Water Vapor Oxygen Reclamation In-flight Technology Demonstration Experiment) is an orbital flight experiment for a fixed alkaline electrolyte (FAE) electrolyser stack dedicated to generate oxygen and hydrogen out of water for life support and other applications. It was originally planned to fly in September 2003 on board the SpaceHab mission STS -118 with the space shuttle COLUMBIA flight ISS-13A.1, but after the tragic accident of COLUMBIA it was adapted to be launched with the unmanned Russian FOTON-M2 in May 2005. FAVORITE was therefore redesigned, manufactured and ground tested in 2004. This paper summarizes the pre-flight ground test results, reports on the lessons-learnt and gives an overview of the intended in-orbit and post-mission test program.
Technical Paper

Design Status of ARES Closed-Loop Air Revitalization System for Accommodation on the ISS

2005-07-11
2005-01-2807
During the last years extensive work has been done to design and develop the Closed Loop Air Revitalization System ARES. The potential of ARES for future space exploration missions is to significantly reduce the water upload demand, increase the safety of the crew by reducing dependency on re-supply flights and due to the launch mass restraints - make future exploration missions to other planets possible. Past years’ activities concentrated on the development of a full-scale demonstrator which was in form, fit, and function comparable to an ‘engineering model’ (EM). Most equipment was off-the-shelf and has been mechanically upgraded to EM standard. The demonstrator includes the functions of CO2 concentration, CO2 reduction and oxygen generation. All components fit into one ISPR. The design minimizes the number of external interfaces in order to achieve a high degree of independence and flexibility. Design baseline for the development was the accommodation in NODE 3 of the ISS.
Technical Paper

Design Status of ARES for Accommodation on the ISS

2004-07-19
2004-01-2493
During the last years extensive work has been done to design and develop the Closed Loop Air Revitalisation System ARES. The potential of ARES e.g. as part of the ISS ECLSS is to significantly reduce the water upload demand and increase the safety of the crew by reducing dependency on re-supply. The current activities concentrate on the development of a full-scale demonstrator with ‘engineering model’ quality. The demonstrator will include the functions of CO2 concentration, CO2 reduction and oxygen generation. All components will fit into one ISPR. The design will minimize the number of external interfaces in order to achieve a high degree of independence and flexibility with respect to accommodation on the ISS. The paper describes the current development status and touches on critical technology tests for performance optimization.
Technical Paper

The FAE Electrolyser Flight Experiment FAVORITE: Current Development Status and Outlook

2004-07-19
2004-01-2490
At the 2002 ICES, FAVORITE, the orbital flight experiment for a fixed alkaline electrolyte (FAE) electrolyser stack was presented. The planning at that time was to fly the experiment in September 2003 on board the Space-Hab mission STS-118 with the space shuttle COLUMBIA flight ISS-13A.1. Due to the tragic accident of COLUMBIA on Feb. 1st, 2003, these plans became obsolete and alternative launch opportunities were looked for. They were finally found with the unmanned Russian FOTON-M2, which is built by TsSKB-PROGRESS in Samara, Russia and scheduled for launch from the Baikonur cosmodrome in April 2005. Because of the switch from a manned to an unmanned mission and other operational constraints, FAVORITE had to be redesigned in several parts. This paper summarizes the objectives of the flight experiment and describes the required design changes. It also presents an overview of the actual development status as well as of the work ahead.
Technical Paper

Design Status of ARES for Accomodation on the ISS

2003-07-07
2003-01-2623
During the last years extensive work has been done to design and develop the Closed Loop Air Revitalisation System ARES. The potential of ARES e.g. as part of the ISS ECLSS is to significantly reduce the water upload demand. The current activities concentrate on the development of a full-scale demonstrator with ‘engineering model’ quality. The demonstrator will include the functions of CO2 concentration, CO2 reduction and oxygen generation. All components will fit into one ISPR. The design will minimize the number of external interfaces in order to achieve a high degree of independence with respect to accommodation on the ISS. The paper describes the current development status and touches on critical technology tests for performance optimization.
Technical Paper

ANITA: An FTIR Spectrometer Flight Experiment for Space Craft Cabin Air Analysis

2001-07-09
2001-01-2160
In a multiple-phase ESA project starting in 1990, the technology for trace gas monitoring in a crewed space cabin was developed. Based on optical principles - a Fourier-Transform-Infrared Spectrometer in combination with sophisticated analysis S/W - the instrument has the characteristics to identify and quantity quasi on-line over 30 most relevant trace gases in air. A system for testing the analysis technology in a shuttle flight is presently under design. The ANITA (Analyzing Interferometer for Ambient Air) development status and plans for the space flight beginning of 2003 will be reported in this paper. The description of the analysis S/W was already reported in an earlier ICES paper [1].
Technical Paper

Blind Test Performance of the ESA FTIR-Based Multi-Component Monitoring System for Spacecraft Air Analysis

2001-07-09
2001-01-2157
Through the last decade ESA (European Space Agency) have developed a TGM (Trace Gas Monitoring) system for spacecraft air analysis from paper study to a fully operational breadboard [1–9]. The TGM system is a combination of FTIR spectrometry and specially developed analysis techniques. Ongoing work aims at a system flight experiment on e.g. the Space Shuttle early in 2003 [10]. This paper mainly covers the application of the TGM breadboard for a competitive blind testing on unknown multi-gas mixtures arranged by NASA. The TGM HW was applied as is, but a special calibration for the NASA test scenario was made. Four different system suppliers competed in the testing, and the ESA TGM system performed clearly best [11]. This independently defined and supervised testing has confirmed that the ESA TGM system is reliable to perform quasi-real time gas measurements in the concentration ranges required by ESA.
Technical Paper

Air Revitalisation System Demonstrator - Testing in Closed Chamber

2000-07-10
2000-01-2354
The development of the air revitalisation system ( AR) for a crewed spacecraft was initiated in 1985. The selected technical approach is a three-step process consisting of (1) a solid amine water steam desorption system to concentrate (the mainly) metabolically produced carbon dioxide(CO2) from the air (2) a Sabatier reactor to reduce the CO2 to water and methane (CH4) and (3) a fixed alkaline electrolyser to reclaim from the water the oxygen O2 for the crew. During 1996 / 1997 the AR system was successfully demonstrated on a laboratory scale configuration for a crew of three persons equivalent. During 1998 / 2000 the AR system was transformed into a rack-mounted so-called Air Revitalisation System Technology Demonstrator (ARSD) for ‘closed loop’ testing in a dedicated Closed Chamber, to demonstrate the readiness of the technology for a possible incorporation in the ISS enhancement programme.
Technical Paper

Current Status of the ESA FTIR-Based Multi-Component Monitoring System for Spacecraft Air Analysis

2000-07-10
2000-01-2302
This paper presents the status of ongoing BB studies for an optimized trace gas monitoring (TGM) system configured to simultaneously and quasi-online detect (quantitatively and qualitatively) 30 different trace gases in manned spacecraft. The system principle relies on the detection of molecule absorption lines in the infrared being converted into a measured spectrum by a Fourier Transform Infrared (FTIR) Spectrometer. The work is based on 10 years study phases aiming now towards performance demonstration on unknown gas mixtures and an in-flight demonstration on Space Shuttle or ISS. The theoretical background, sensor combinations, SW principle descriptions and multi-module monitoring strategies have been reported earlier (please refer to reference [1] - [4], [6]).
Technical Paper

Air Revitalisation System Demonstrator Design and Test Results

1999-07-12
1999-01-1956
Since 1985 in a step by step approach an advanced air revitalisation system has been developed for a crewed spacecraft. The metabolically produced carbon dioxide is concentrated through a solid amine water steam desorp-tion system and reduced to water and methane in a so-called Sabatier reactor. The water is currently fed into a fixed alkaline electrolyser to reclaim the oxygen for the crew. However, also water from other sources may be used. The hydrogen is recycled into the Sabatier reactor. The present system handles methane as a waste product closing so far the oxygen loop only. The system has been already successfully demonstrated in a laboratory scale configuration for a crew of three persons in 1996/1997. This paper discusses the results of the current development phase in which the system is reconfigured to fit into an International Space Station payload rack (ISPR). For this purpose the complete system design has been reviewed and upgraded where necessary.
Technical Paper

Progress in an FTIR-Based Multi-Component Monitoring System for Spacecraft Air Analysis

1999-07-12
1999-01-2150
In this paper, an advanced trace gas monitoring system for manned space cabins is presented. The principle of functioning of the measurement system is based on the detection of gas-specific absorption features in the Infrared area of the spectrum. The core element in the monitoring system is a Fourier-Transform Infrared (FTIR) Spectrometer. When calibration is carried out applying sophisticated, novel analysis methods, the system can simultaneously detect and quantify all the interesting gases in manned space cabins. In a previous Trace Gas Monitoring multi-phase program (TGM 2) [1],[2], the FTIR technology has demonstrated its ability to handle multi-component, quasi on-line gas measurements, including identification and quantification of 23 important trace gases in a mixture. In the ongoing phase 3 (TGM 3), initiated end of 1997 [3], a fully operational FTIR technology demonstration model is tested being able to detect simultaneously 30 different trace gases in a mixture.
Technical Paper

Fully Operational FTIR Based Multi-Component Gas Analysis System for Spacecraft Cabin Air Monitoring

1998-07-13
981568
An advanced trace gas monitoring system for long duration manned space missions - such as the International Space Station - is discussed. The system proposed is a combination of a Fourier-Transform Infrared Spectrometer (FTIR) and a distributed ‘Smart Gas Sensor system (SGS). In a running multi-phase programme [1,2] the FTIR technology, applying novel analysis methods, has been demonstrated to handle multi-component gas measurements, including identification and quantification of 20 important trace gases in a mixture. In the current phase 3, initiated end of 1997, a fully operational FTIR technology demonstration model will be manufactured and tested. The SGS consists of an array of twenty electrically conductive polymer sensors supplemented with an array of quartz crystal microbalance sensors. The technology has been tested on the Russian MIR space station and is currently miniaturized into a second-generation flight model.
Technical Paper

O2 Generation: A Key System for Extended Manned Space Missions

1997-07-14
972561
The on-board production of oxygen is demanded for future long-term missions such as International Space Station, Lunar base and missions to Mars. The needed oxygen can be recovered by electrolysing the water produced by the carbon dioxide processing system or other on-board water sources like water condensate. This way the oxygen loop will be closed. Since 1985 in a harmonised programme sponsored by the European Space Agency (ESA) and the German Space Agency (DARA), the required technology for an air revitalisation system (ARS) is being developed. The system is based on carbon dioxide concentration using solid amine water steam desorption, carbon dioxide hydrogenation (Sabatier) and fixed alkaline electrolysis. This paper reports on the manufacturing and testing of the fixed alkaline electrolyser (FAE) system designed for a 3-person capability and it discusses the current status of the ARS.
Technical Paper

Breadboarding of an FTIR Spectrometer for Air Monitoring in Manned Spacecraft

1996-07-01
961372
This paper presents the results of the breadboarding study phase of a Fourier transform infrared spectrometer (FTIR) based trace gas monitor for the use on-board a manned spacecraft. The FTIR system configuration includes a multiple-reflection long path gas cell, a half-wavenumber resolution interferometer, and a mercury-cadmium-telluride (MCT) detector. In the study, the emphasis was put on the achievement of a predefined analytical performance using a state-of-the-art multivariate analysis method. Robustness of the employed algorithms was to the fore rather than a sophisticated FTIR instrumentation. The achieved results show high accuracy in detecting trace gases in the range between the (lower) long-term and (higher) short-term Spacecraft Maximum Allowable Concentration (SMAC) limits. The project has demonstrated a good proof-of-concept for the use of an FTIR system in manned space flights.
Technical Paper

Air Revitalization System Evolution, Test Results and Performance Predictions

1996-07-01
961371
Environment Control and Life Support Systems (ECLSS) are necessary for missions of human beings into outer space. The longer the missions are the more the closure of the ECLSS loops is demanded. Since 1985 in a harmonised multi-phased programme under ESA (European Space Agency) and DARA comtract (German Space Agency) the Air Revitalisation System ( ARS )and its technologies are being developed. This paper reviews the current status of the complete system and presents the latest development results of the three key elements: The solid amine CO2 concentrator. The Sabatier reactor. The fixed alkaline electrolyser.
Technical Paper

ECLSS Trace Gas Monitoring: Breadboarding of an FTIR Michelson Interferometer

1994-06-01
941265
In an earlier assessment of trace gas monitoring techniques it was shown that Fourier Transform Infrared Spectroscopy (FTIR) is the most promising technology for multicomponent gas analysis of the breathing air for long duration crewed space missions. It has the potential of meeting all the requirements established for the different trace gas monitoring scenarios; however, it needs further development. An important step to achieve this development objective is the breadboarding of such an FTIR system with particular emphasis on the critical technologies. The critical technologies as identified so far are the detector and cooler, the gas cell, the infrared source, and the analysis software. In this paper we will present and discuss the relevant requirements, the planned instrumental and software concept to be realized for meeting the intended monitoring task, and the expected performance data of the breadboard. The work is being performed under ESA contract.
Technical Paper

CO2 Processing and O2 Reclamation: Recent Technology Developments for the First Closed Loop in ECLSS

1994-06-01
941337
The longer human beings in closed habitats need to be supplied with life support functions, the more the closure of the ECLSS loops becomes a must. This is certainly valid for habitats in space, where a steady resupply of consumables from Earth is impossible due to excessive distances or prohibitive high cost, but it may apply in general to earthbound habitats as well, if for instance large submarines want to extend their diving time. In two harmonised programs for the two customers European and German Space Agency (ESA/ESTEC, DARA), Dornier is now in charge with the development of the technologies for the closure of the oxygen loop.
Technical Paper

ECLS Technology Development Programme-Results and Further Activities

1990-07-01
901289
In support of the Columbus ECLSS, a technology development program has been performed on four items: Regenerative CO2 removal Trace Gas Contamination Control Trace Gas Contamination Monitoring Low Noise Variable Speed Fan This paper describes the contents and results of the concluding Subsystem Level Tests and consecutive programme extensions which concentrated on: performance of the Contamination Monitoring Unit noise generation of the Variable Speed Fan lifetime tests of the CO2 removal solid amine closed water loop operation of a solid amine CO2 removal unit
X