Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Ion-Sense-Based Real-Time Combustion Sensing for Closed Loop Engine Control

2013-04-08
2013-01-0354
The cycle-to-cycle and cylinder-to-cylinder variations that occur in a spark ignited engine create the opportunity for monitoring combustion in real time to provide useful benefits for engine control. Reduction of variation and operation of the engine at closer-to-optimum conditions is possible if real time feedback of the combustion process is available. An in-cylinder pressure sensor with pressure-based control algorithms is one method of monitoring the combustion process. However, such a solution presents new challenges of an additional cylinder penetration location, sensor packaging and added cost. A substitute for the in-cylinder pressure sensor is a device which measures the flame conductivity, commonly known as an ionization current sensor. It can be integrated with the spark plug in the case of SI engines, or with the glow plug in the case of compression ignition engines.
Technical Paper

Bench Test for Scuff Evaluation of Surface Modified Piston and Bore Materials

1996-02-01
960013
This paper describes a bench method to evaluate the frictional behavior, under scuffing conditions, of some test coupons of standard materials currently used in making cylinder bores and pistons. The usefulness of this method is in evaluating new materials and coatings that may enable the elimination of iron liners from engine blocks. While investigating the potential application of Plasma Source Ion Implantation (PSII) on engine piston/bore materials, we have systematically studied the scuffing related friction behavior of aluminum 390 alloy and cast iron. A pin-on-disk tribometer is used under dry sliding conditions. Testing parameters for simulating cold scuff in bench tests have been specified. This proposed test method offers a screening tool desirable for the development of PSII technology and may also be useful for the design of other new surface modification techniques.
Technical Paper

A Diamond-Like Carbon Coating for Aluminum Alloy Piston/Bore Application

1996-02-01
960014
This paper examines the potential use of diamond-like carbon (DLC) on aluminum alloy pistons of internal combustion engines. Our approach is to apply a DLC coating on the piston running against an aluminum-390 bore thus eliminating the iron liners in a standard piston/bore system. Experimental data, using a pin-on-disk tribometer under unlubricated test conditions, indicate that the performance of the DLC coating against aluminum 390 exhibits superior friction resistance compared to aluminum-390 against cast iron; the latter material couple representing the materials currently being used in production for the piston/bore application. Moreover, by thermally cycling the DLC coatings we show that improved friction and wear properties can he maintained to temperatures as high as 400°C.
X