Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Developing Hydrogen (H2) Specification Guidelines for Proton Exchange Membrane (PEM) Fuel Cell Vehicles

2005-04-11
2005-01-0011
In 1999, the Society of Automotive Engineers established the Fuel Cell Standards Committee (FCSC). The Committee is organized in subcommittees that address issues such as Interface, Hydrogen (H2) Quality, Safety, Performance, Emissions and Fuel Consumption, Recycling and Terminology. Since its inception the SAE/FCSC has published several recommended practices, which have drawn the attention of national and international organizations. These include SAE J2578 (Fuel Cell Vehicle Safety), SAE J2600 (Compressed H2 Surface Vehicle Refueling Devices), and SAE J2594 (Recyclability of Fuel Cell Systems). The need for having one common grade of hydrogen for all US commercial hydrogen-refueling stations for FCVs was the reason to establish the H2 Quality Task Force (HQTF) in late 2003. At the present time there is no representative US-national or international standard addressing the quality of hydrogen fuel that is acceptable for fuel cell vehicles.
Technical Paper

Development of Microfabricated Chemical Sensors Operated in the Differential Mode

1993-07-01
932204
Chemical and electrochemical sensors and sensor arrays can be produced using microfabrication and micromachining technologies. These technologies permit the formation of three-dimensional structures and also produce geometrically well-defined, highly reproducible sensor prototypes. Most present chemical and electrochemical sensors operate using a single device for absolute measurements. There are many circumstances in which interference by other species, the signal-to-noise ratio, and/or the selectivity and sensitivity are less than desirable when using a single sensor. It is feasible to employ a differential mode of sensor operation to overcome these weaknesses. In the differential mode of measurement, a pair of identical sensors is used, with one sensor as the active device, and the other serving as a reference. The active device may incorporate an electrocatalyst, while the reference sensor does not.
Technical Paper

Thermal, Mass, and Power Interactions for Lunar Base Life Support and Power Systems

1993-07-01
932115
A model has been developed for quantitative examination of the integrated operation of a lunar base power system, employing regenerative fuel cell technology, which would lead to incorporation into a lunar base life support system. The model employs methods developed for technology and system trade studies of the Life Support System configuration for the National Aeronautics and Space Administration (NASA). This paper describes the power system and its influence on life support while comparing various technologies, including pressurized gas storage and cryogenic storage, and different operation conditions. Based on preliminary assumptions, the mass, power, and thermal requirement estimates are made at the level of major components. The relative mass contribution and energy requirements of the components in various configurations are presented.
Technical Paper

Sensor Systems for Regenerative Life Support Systems

1992-07-01
921172
Successful operation of life support systems for space exploration missions of the future will require unique sophisticated sensor systems for highly dependable operation, i.e., autonomous and fault tolerant. These sensor systems will require the use of multifunctional in situ sensors that are strategically located throughout the life support systems. These sensors will communicate through control loops that are hierarchically interconnected at several levels of the life support system. Development of the sensor system must be done synergistically with the integration and testing of the subsystems, and their process units, as they are assembled and tested. The plan for proceeding with the sensor systems development and the integration with the test bed assembly and operation is described in this paper.
X