Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Fatigue Simulation of Power Train Components During the Design Process

2000-06-12
2000-05-0204
The lifetime of power train components can be improved dramatically by finding crack initiation points with suitable software tools and optimization of the critical areas. With increasing capacities of computers the prediction of the lifetime for components by numerical methods gets more and more important. This paper discusses some applications of the outstanding fatigue simulation program FEMFAT supporting the assessment of uniaxially and multiaxially loaded components (as well as welding seams and spot joints). The theory applied in FEMFAT differs in some aspects from classical approaches like the nominal stress concept or the local one and can be characterized by the term “influence parameter method”. The specimen S/N-curve is locally modified by different influence parameters as stress-gradient to take into account notch effects, mean-stress influence which is quantified by means of a Haigh-diagram, surface roughness and treatments, temperature, technological size, etc.
Technical Paper

Improving the Life Time of Dynamically Loaded Components by Fatigue Simulation

1998-11-30
982220
The lifetime of dynamically loaded components can be improved dramatically by finding the crack initiation point with suitable software tools and optimization of the critical areas. With increasing capacities of computers the prediction of the lifetime for components by numerical methods gets more and more important. Using the program FEMFAT the assessment of uniaxially and multiaxially loaded components as well as welding seams and spot joints is possible. The theory applied in FEMFAT differs in some aspects from classical approaches like the nominal stress concept or the local one and can be characterized by the term „influence parameter method”. The specimen S/N-curve is locally modified by different influence parameters as e.g. stress-gradient to take into account notch effects, mean-stress influence which is quantified by means of a Haigh-diagram, surface roughness and treatments, temperature, technological size, etc.
X