Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Performance Testing of an Advanced Lightweight Freezable Radiator

2006-07-17
2006-01-2232
During extravehicular activities (EVAs) it is crucial to keep the astronaut comfortable. Currently, a sublimator rejects to space both the astronaut's metabolic heat and that produced by the Portable Life Support System. In doing so, it consumes up to 3.6 kg (8 lbm) of water; the single largest expendable during an eight-hour EVA. While acceptable for low earth orbit, resupply for moon and interplanetary missions will be too costly. Fortunately, the amount of water consumed can be greatly reduced if most of the heat load is radiated to space. However, the radiator must reject heat at the same rate that it is generated to prevent heat stroke or frostbite. Herein, we report on a freezable radiator and heat exchanger to proportionally control the heat rejection rate.
Technical Paper

A Lightweight EVA Emergency System

2004-07-19
2004-01-2264
With an increased rate and length of extravehicular activities (EVAs), a low, but statistically significant possibility exists for system and component failures. In that potential event, it is critical to provide oxygen support, carbon dioxide and moisture removal and thermal control to sustain life. The existing EVA emergency system in the Portable Life Support Unit (PLSS) is reliable, and works well, however, it is heavy because of the high oxygen consumption inherent in its open-loop mode of operation. TDA Research, Inc. (TDA) is developing a low-venting emergency system that provides 30-minute life-support in the case of system or component failures in the Portable Life Support System (PLSS). The approach is to minimize the quantity of the gas vented from the suit and thereby to reduce the weight of the stored oxygen. The operation of the system however, requires an effective sorbent that would remove carbon dioxide from the suit. TDA has developed such a sorbent.
X