Refine Your Search

Search Results

Author:
Viewing 1 to 3 of 3
Technical Paper

Real World Emissions from Tier 4F Off-Road Construction Equipment

2022-03-29
2022-01-0577
The primary purpose of this study was to obtain gas-phase and particular matter (PM) emissions from newer Tier 4 final off-road construction equipment using a Portable Emissions Measurement System (PEMS). This information can be used to provide accurate estimates of emissions from off-road construction equipment under real-world scenarios. Emission measurements were made for 10 pieces of Tier 4 final construction equipment including 3 excavators, 3 wheel loaders, 2 crawler tractors and 2 backhoe/loaders. The duty cycles included a pre-defined combined sequence of a cold-start phase, trenching, backfilling, travelling, and idling. For all types of equipment, the highest emissions were seen for the cold start phase, which showed NOx emissions levels ranging from 3.4 to 6.3 g/bhp-hr, from 15.8 to 26.1 g/kg-fuel and from 107 to 249 g/hour, with an average exhaust temperature around 100°C.The next highest emissions were found for the travel mode.
Journal Article

Performance and Activity Characteristics of Zero Emission Battery-Electric Cargo Handling Equipment at a Port Terminal

2022-03-29
2022-01-0576
Goods movement and port related activities are a significant source of emissions in many large urban areas. Electrification of diesel cargo handling equipment is one method of reducing community exposure to these emissions, that also provides the potential for reducing greenhouse gas emissions. This study evaluated the performance of several pieces of zero emission cargo transfer equipment for a demonstration conducted at two terminal locations at the Port of Long Beach (POLB). This included the data logging of three battery-electric top handlers and one battery-electric yard tractor, as well as two baseline diesel top handlers and one diesel yard tractor. The battery-electric equipment typically operated about 5 hours per day, while using between 34 to 50% of the battery pack state of charge (SOC). In general, the battery-electric equipment was able to provide comparable hours of operation to the diesel equipment over a typical 8-hour shift.
Technical Paper

Impacts of Diverse Driving Cycles on Electric and Hybrid Electric Vehicle Performance

1997-08-06
972646
A vehicle's energy consumption and emissions are extremely sensitive to the operating modes of that vehicle. The LA4 test cycle in the Federal Test Procedure (FTP) is the current basis for evaluating a vehicle's energy consumption and emissions, but it was developed more than 20 years ago and does not represent today's typical driving patterns. In this paper, we describe a set of computer simulation models to evaluate energy consumption and emissions of internal combustion engine (ICE) vehicles, electric vehicles (EVs), and hybrid-electric vehicles (HEVs) under a variety of driving cycles. Using these models, two real-world vehicles -- a 92 Ford Taurus and a 97 GM EV1, -- and a hypothetical rangeextender type HEV, are modeled and analyzed under five different driving cycles. We focus our analysis on vehicle performance characteristics such as driving range, equivalent fuel economy, EV and HEV system efficiency, pure electric drive range, and tailpipe emissions.
X