Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Simulation of Temperatures of Three Way Catalytic Converter for Motorcycles at Higher Temperatures

2023-10-24
2023-01-1815
For a quick reach to the operating temperatures, the three way catalytic converter is recently located closer to the engine and subjected to higher temperatures than before. At the same time, the three way catalytic converter has upper thermal limits. Therefore, the operating temperatures have to be estimated accurately in the early period of product development. In this research, the four analysis methods are linked with the one-dimensional engine cycle simulation to achieve the goals. Firstly, for the estimation of gas temperatures at the exhaust port of the engine, the combustion analysis using the 3D-CFD was conducted to accurately simulate the way the heat was generated. Then, for the estimation of heat dissipation from the exhaust system to the atmosphere, the heat conduction analysis coupled with the air flow analysis around the vehicle body using the 3D-CFD was conducted.
Technical Paper

A Quasi Two Dimensional Model of Transport Phenomena in Diesel Particulate Filters - The Effects of Particle and Wall Pore Diameter on the Pressure Drop -

2015-09-01
2015-01-2010
Experimental and numerical studies were conducted on diesel particulate filters (DPFs) under different soot loading conditions and DPF configurations. Pressure drops across DPFs with various mean pore diameters loaded with soots having different mean particle diameters were measured by introducing exhaust gases from a 2.2 liter inline four-cylinder, TCI diesel engine designed for use in passenger cars. A mechanistic hypothesis was then proposed to explain the observed trends, accounting for the effects of the soot loading regime in the wall and the soot cake layer on the pressure drop. This hypothesis was used to guide the development and validation of a numerical model for predicting the pressure drop in the DPF. The relationship between the permeability and the porosity of the wall and soot cake layer was modeled under various soot loading conditions.
X