Refine Your Search

Search Results

Author:
Viewing 1 to 3 of 3
Technical Paper

Controller for Rapid Development of Advanced Mode Combustion Algorithms using Cylinder Pressure Feedback

2008-10-20
2008-21-0015
Worldwide regulatory demands to reduce emissions of greenhouse gases and other airborne pollutants are leading to significant changes in internal combustion engines. Many engine subsystems such as fuel injection, valvetrain, turbochargers and EGR, are being changed to address these demands. Additionally, advanced combustion modes such as HCCI are being pursued to address the key shortcomings of today's gasoline and diesel engines. Cylinder pressure based control is an enabling technology to the development and application of advanced engine subsystems and a key control element for advanced combustion modes. This paper describes a tool for rapid development of closed-loop cylinder pressure based algorithms. The Cylinder Pressure Development Controller (CPDC) is an affordable, automotive grade package containing a unique architecture enabling real-time, next engine cycle combustion feedback control.
Technical Paper

Design of an Automotive Grade Controller for In-Cylinder Pressure Based Engine Control Development

2007-04-16
2007-01-0774
This paper describes a new tool to capture cylinder pressure information, calculate combustion parameters, and implement control algorithms. There are numerous instrumentation and prototyping systems which can provide some or all of this capability. The Cylinder Pressure Development Controller (CPDC) is unique in that it uses advanced high volume automotive grade circuitry, packaging, and software methodologies. This approach provides insight regarding the implementation of cylinder pressure based controls in a production engine management system. A high performance data acquisition system is described along with a data reduction technique to minimize data processing requirements. The CPDC software architecture is discussed along with model-based algorithm development and autocoding. Finally, CPDC calculated combustion parameters are compared with those from a well established combustion analysis system and thermodynamic simulations.
Technical Paper

Evaluation of a Non-Thermal Plasma System for Remediation of NOx in Diesel Exhaust

1999-10-25
1999-01-3639
With ever more stringent CO2 emissions mandates, many automobile manufacturers are seeking the fuel economy benefits of diesel and lean-burn gasoline engines. At the same time the emissions standards that diesel and gasoline engines will have to meet in the next decade continue to reduce. Proposed solutions for meeting the stringent emissions standards all appear to have limitations, such as propensities to poisoning from sulfur, narrow operating temperature windows, and requirements for controls that give rapid rich excursions. Non-thermal plasma-catalyst systems have shown good performance in bench testing while being largely unaffected by these same issues. A two-stage system with a unique non-thermal plasma reactor combined with a zeolite-based catalyst has been constructed and shown to work over a wide temperature range.
X