Refine Your Search

Search Results

Author:
Viewing 1 to 4 of 4
Technical Paper

Thermo-Mechanical Fatigue and Press-Fit Loss Analysis of Valve Seat Insert

2021-09-22
2021-26-0338
Valve seat inserts (VSI) are installed in cylinder heads to provide a seating surface for poppet valves. Insert material is more heat and wear resistant than the base cylinder head material and hence it makes them better suited for valve seating and improved engine durability. Also use of inserts permits easier repair or rebuild of cylinder heads as only the wear surfaces need to be replaced. Desirable performance characteristics are appropriate sealing, heat-transfer and minimizing valve’s seating face to VSI wear and undesired outputs include valve seat dropping and cracking. With the downsizing trend of diesel engines, it leads to increasing power density and therefore higher cylinder pressure and temperatures. Hence the engine components are getting exposed to more severe loadings and hence to damage modes, which were heretofore not experienced. Among such possible damage modes are insert’s yielding and corresponding press-fit loss leading to either it’s cracking or drop-out.
Technical Paper

Correlation of Cylinder Head Gasket Sealing Analysis Results between Gasket Element and 3D Continuum Element

2020-03-10
2020-01-0049
A head gasket is a component that sits between the engine block/liner and cylinder head(s) in an internal combustion engine. Its purpose is to seal high pressure combustion gasses in the cylinders and to seal coolant and engine oil. It is the most critical sealing application in an engine. As a general practice, the load deflection(L/D) characteristic is generated by the gasket manufacturer for edge molded or composite gasket types. However, in the case of a solid-sheet metallic gasket, where the gasket is expected to undergo localized yielding to provide adequate conformance and sealing, usually supplier may not be able to provide the required L/D curve due to difficulties to experimentally separate the large loads and small displacements from the elastic loads and deflections of the experimental apparatus. In absence of L/D curve, the typical analysis approach is to model gasket as 3D continuum elements available in ansys by considering nonlinear material and frictional contacts.
Journal Article

Cylinder Head Gasket Fretting Simulation for High Horse Power Engine

2019-01-09
2019-26-0305
The head gasket of an internal combustion engine acts as a critical seal between its cylinder block and heads. Typically, and ideally, a high horse power engine head gasket will be composed of elastomer fluid sealing elements in a carrier and combustion seal body composed of aluminum, brass, carbon steel, copper, nickel, and/or stainless steel etc. The head gaskets purpose is to seal high pressure combustion gases, coolant, and oil and to ensure no leakage of gases or fluids out of the block to head joint. Three major failure modes [1] for cylinder head gasket joint are; 1. Fluid or gas leakage due to low sealing pressure. 2. Head gasket (bead) cracking due to high gap alternation and 3. Gasket scrubbing/fretting due to pressure and temperature fluctuations causing relative movement in the joint. During engine operation, the head gasket design should be robust enough to prevent all failure modes and provide acceptable performance.
Technical Paper

An Approximate Lap Time Minimization Based on Indy Style Racing Car Geometry

1991-01-01
910011
At the Indianapolis 500, racing teams expend a great deal of effort to shave hundredths of seconds off of lap times. This paper concerns the use of a simple model to provide an optimal combination of design parameters, such as wing induced downforce, available engine power, tire slip angle characteristics and aerodynamic drag which will give a minimum lap time. The model is based upon experimental data mainly from the 1988 racing season. (This data is presented in its entirety.) Analysis indicates that the limiting factor of fast lap times is the allowable tire slip angle. Based upon this model a minimum lap time of 40.8 seconds is calculated which corresponds to a speed of 354.90 km/hr (220.57 MPH). In an attempt to further characterize this optimum point, some parameter studies are performed which yield design curves illustrating the car's sensitivity with respect to changes in vehicle mass, engine power, air density and minimum aerodynamic drag.
X