Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Thermodynamic and Cycle Models for a Low-Pressure CO2 Refrigeration Cycle

1999-03-01
1999-01-0869
Carbon dioxide (CO2)-based refrigeration systems have been proposed as environmentally benign alternatives to current automotive air conditioners. The CO2 vapor-compression system requires very high operating pressures and complicated control strategies. Recent experimental results indicate that operating pressures comparable to those of current automotive air conditioners can be attained by the inclusion of a secondary carrier fluid (a “co-fluid”), with solution and desolution of the CO2 from the co-fluid substituting for condensation and vaporization of pure CO2. In this work, modeling tools have been developed to optimize the CO2/co-fluid cycle, including the selection of a co-fluid, the CO2/co-fluid ratio (the “loading”), and the operating conditions.
Technical Paper

Reduced Pressure Carbon Dioxide Cycle for Vehicle Climate Control

1999-03-01
1999-01-0868
Environmental concerns have spawned renewed interest in naturally occurring refrigerants such as carbon dioxide. CO2 has attractive features such as high enthalpy of evaporation and low cost compared to halocarbons. However, the vapor pressure of CO2 is high at temperatures normally encountered in refrigeration and air conditioning systems when compared to traditional and alternative refrigerants such as CFC-12 and HFC-134a. Major research efforts are underway to investigate the transcritical CO2 cycle, in which a gas cooler instead of a condenser accomplishes heat rejection to ambient, since carbon dioxide under these conditions is above the critical point. The vapor pressure in the gas cooler may exceed 120 bar (1,740 lb/in2). In this paper a reduced pressure carbon dioxide system is reported (Ref 1). Two companion papers will address properties of working fluids (Ref 2) and thermodynamic and cycle models (Ref 3) for the low pressure carbon dioxide cycle.
X