Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Island Concept EVT

2006-10-16
2006-01-3260
This paper presents an all-wheel-drive (AWD) hybrid electric vehicle (HEV) design approach for extreme off-road applications. The paper focuses on the powertrain design, modeling, simulation, and performance analysis. Since this project focuses on a military-type application, the powertrain is designed to enhance crew survivability and provide several different modes of limp-home operation by utilizing a new vehicle topology -herein referred to as the island topology. This topology consists of designing the vehicle such that the powertrain and other equipment and subsystems surround the crew compartment to provide a high level of protection against munitions and other harmful ordnance. Thus, in the event of an external shield penetration, the crew compartment remains protected by the surrounding equipment - which serves as a secondary shield.
Technical Paper

An 1800 HP, Street Legal Corvette: An Introduction to the AWD Electrically-Variable Transmission

2005-04-11
2005-01-1169
New vehicle technologies open up a vast number of new options for the designer, removing traditional constraints. Though hybrid powertrains have thus far been implemented chiefly to improve the fuel economy of already economical passenger cars, hybrid technology may have even more to offer in a performance vehicle. In the year when the C6 Corvette and two large GM hybrid projects have been unveiled, a new case study looks to combine these ideas and explore the performance limits for the next generation high performance sports car. Through an innovative transmission concept and thoughtful packaging, the next generation Corvette could enhance a 600 HP spark-ignited V-8 (supercharged LS2) with 1200 HP from electric machines, and still meet current emission standards. Such immense tractive power, however, would be useless without an intelligent means of delivering this power to the wheels.
Technical Paper

High-power High-speed Road Train System

2003-11-10
2003-01-3380
This paper presents the design and development of a high-power, high-speed “road train” (with both on- and off-road applications). The system looks to optimize both high-speed operation and low-speed, close-quarters driving with the introduction of autonomous power modules. Each trailer in the road train has it own electric traction system. When driving on open roads or in open areas, each traction system receives electric energy from the high-powered tractor. However, the individual traction systems allow for distributed tractive effort, improving upon the classic road train. Further, each module has its own independent steering system, allowing for practical implementation of longer trains. Use of longer trains in open areas allows for reduced operational costs, and increased efficiency. When mobility becomes a primary concern or zero emissions operation is needed, small power supplies can allow independent trailer operation.
Technical Paper

2000 HP Tractor-Trailer for the 21st Century

2002-11-18
2002-01-3141
This paper presents the conceptual design of a high-power, high-speed tractor-trailer for severe duty applications. Design of the tractor-trailer introduces several new concepts, including the general vehicle architecture, a new electrical transmission system and a new electric tandem axle. The vehicle architecture consists of a low drag cab concept with a fully integrated turbo-generator power source, an exhaust gas electric decontamination system and auxiliaries. The electric transmission introduces a new combination of electrical machines and power electronics designed to perform under maximum load with minimum dimension, weight and price. The electric tandem axle is a new concept of an all-wheel steering independent suspension with virtual electromagnetic differential.
X