Refine Your Search

Search Results

Author:
Viewing 1 to 11 of 11
Technical Paper

Reduction of Spray Momentum for GDI High-Pressure Injectors - A Necessary Step to Accomplish Series Production of Super-Charged DI-Engines

2005-04-11
2005-01-0104
The first part of the present paper describes the means by which the spray momentum can be decreased. The objective can be obtained either by injector-internal geometrical design changes, which very often lead to a highly non-uniform spray density/droplet distribution or by a new injector-external process, called the colliding jet (CJ) approach. The paper continues with a detailed description of the physics of the controlled secondary breakup process provided by the CJ-approach, which enables a very uniform density/droplet distribution on the downstream side of the collision zone as well as an approximately 40 % decrease in spray penetration depth. The knowledge of the physics of the CJ-approach enables the introduction of a new spray model in the 3-D numerical simulation code NCF-3D.
Technical Paper

Technologies and Components for Power Train Distributed Structures - An Opportunity for Optimizing In-Vehicle EE-Architecture

2004-10-18
2004-21-0026
The paper presents the today’s power train systems, which largely reflect a one to one mapping of physical units into a dedicated electronic control system. A new approach is suggested for a breakdown strategy with an ECU centered structure linked to a surrounding harness of sensors and actuators. Like body electronics did first, automotive graded combination of semiconductor and packaging technologies are used to develop a network of mechatronic components. This allows an easy and effective separation between the SW development at the vehicle level and an off-line optimization and calibration of components. A development project is shown for a gasoline direct injected engine, where mechatronic components (e.g. cylinder, fuel pump and injectors, valve train) are networked and controlled by a master digital core, which is the application SW restricted area of the car manufacturer.
Technical Paper

Optimization by CFD Simulation of Spray Formation Parameters to Adapt Direct Injection High-Pressure Fuel Injectors to High-Speed SI-Engines

2004-03-08
2004-01-0539
The main objective of the paper is to describe the optimization work performed to adjust direct injection (DI)-technology to SI-engines running at high (8000 to 10000 rpm.) and extremely high speeds (more than 18000 rpm). In the first category are located a certain number of small and middle displacement two-stroke series produced engines. In the second category are the typical high power racing engines used for competitions like the formula 1. The first part of the paper describes the particular requirements that an in-cylinder fuelling and mixture preparation will have to fulfill with the extremely short period available for introduction and vaporization of the fuel. The paper continues with a description of the different spray shapes, spray penetration velocities and atomization capabilities, which are optimal for the different combustion chamber architectures.
Technical Paper

Direct Injection for Future SI-Engines - Stand Alone Combustion Layout or Integrated Part of Multi-Function Fuel/Air Management Approach?

2003-03-03
2003-01-0540
In the future generation of low consumption SI-engine layouts, it has become necessary to reduce costs as well as the complexity level and, increase the system reliability by the latter. To avoid driving the GDI-system in the critical, very lean stratified operation mode without losing the fuel consumption benefit, a solution is suggested, which combines a fully variable valve control system with a low level, robust GDI combustion layout. The first part of the present paper presents the latest development in the field of high precision multi-hole GDI injector spray nozzles. The basic aspects of mixture preparation with multi-hole gasoline atomizers are highlighted and their spray behavior compared to that of the current swirl atomizer nozzle. The second part of the paper presents primary optimization of a largely homogeneous GDI combustion layout combined with a fully variable valve timing control system including complete cylinder de-activation.
Technical Paper

Study of the Benefits and Drawbacks of a Substantial Increase of Rail-Pressure in GDI-Injector Assemblies

2002-03-04
2002-01-1132
In the present paper are examined the consequences of a substantial rise in the injection pressure for Gasoline Direct Injection (GDI) injector assemblies. The paper presents a comparative study of the spray behavior of two different injector nozzle layouts submitted to current 10 Mpa rail-pressure as well as to a 30 Mpa injection pressure. To evaluate the differences in the fundamental physical spray parameters are used several specially developed optical visualization techniques, which enable phase-Doppler, PIV, Laser-sheet and high-speed recordings of dense high pressure fuel sprays. A recently developed injector actuator and the necessary modifications to existing high-pressure pumps to reach a 30 MPa pressure level in the fuel system are presented. The change in basic spray parameters (time-resolved droplet distribution and spray momentum) caused by the rail-pressure rise is examined.
Technical Paper

Developments in the Use of Multi-Purpose Numerical Simulation Tools to Optimize Combustion Control Parameters for the 2nd Generation of Lean Burn Stratified GDI Engines

2001-03-05
2001-01-0967
The first part of the paper gives an overview of the current results obtained with the first-generation of GDI-powered vehicles launched on the European market. In view of the rather limited success in fuel consumption gain the second-generation of very lean stratified layouts has begun, but this process requires the development and application of new high-level analysis tools. A possible high performance approach is the multi-purpose use of 3-D numerical simulation both in the development and the engine control strategy calibration phases. The development of a small 1.6 liter lean stratified engine project was chosen to demonstrate the dual application capability of the NCF-3D simulation tool. The paper continues with a description of the engine application frame, the basic features of the NCF-3D simulation tool and the latest enhancements made to combustion and fuel composition models within the software frame.
Technical Paper

Powertrain System Design: Functional and Architectural Specifications

2000-11-01
2000-01-C049
Powertrain controller design is among the most challenging problems due to the complexity of the functions that the system has to support, to the safety aspects and to the cost limits imposed by car manufacturers. To compound these difficulties, time-to-market requirements are becoming more and more stringent. Design time, continuously changing specifications and safety considerations have pushed the design more and more towards software implementation of the main functionality. Software has been traditionally designed with very little abstraction in mind thus forcing a tight dependency of the implementation on the particular hardware architecture, e.g., the instruction set of the micro- controller. Software legacy has made the rapid adoption of new technology and IC's almost impossible, stifling innovation. In addition, the absence of a correct abstraction hierarchy made verifying the correctness of the behavior of the system as well as adding new functionality extremely difficult.
Technical Paper

Enhanced Mixture Preparation Approach for Lean Stratified SI-Combustion by a Combined Use of GDI and Electronically Controlled Valve-Timing

2000-03-06
2000-01-0532
The first part of the paper gives an overview of the current status in fuel consumption gain of the GDI-vehicles previously launched on the European market. In order to increase the potential for a further gain in specific fuel consumption the behaviour of 3 different combustion chamber layouts are studied. The chamber layouts are aimed to adapt as well as possible to the particular requirements for application to a small displacement/small bore engine working in stratified lean conditions. The paper continues with a description of the application that shows the different steps of a structured optimisation methodology for a 1.2 litre, small bore 4-cylinder engine. The applications of an air-motion-guided and a wall-guided layout with a mechanically actuated valve train to the same combustion chamber are discussed. The potential of the air-motion-guided concept is enhanced through the introduction of an electromagnetic fully variable valve train.
Technical Paper

Experimental and Numerical Approach to Injection and Ignition Optimization of Lean GDI-Combustion Behavior

1999-03-01
1999-01-0173
The first part of the paper gives an overview of the current development status of the GDI system layout for the middle displacement engine, typically 2 liter, using the stoichiometric or weak lean concept. Hereafter are discussed the particular requirements for the transition to a small displacement/small bore engine working in stratified lean conditions. The paper continues with a description of the application of the different steps of the optimization methodology for a 1.2 liter, small bore 4 cylinder engine from its original base line MPI version towards the lean stratified operation mode. The latest changes in the combustion model, used in the numerical simulation software applied to the combustion chamber design, are discussed and comparison made with the previous model. The redesign of the combustion chamber geometry, the proper choice of injector atomizer type and location and the use of two-stage injection and multi-spark strategies are discussed in detail.
Technical Paper

Improvements of GDI-Injector Optimization Tools for Enhanced SI-Engine Combustion Chamber Layout

1998-02-23
980494
The suggestions for upcoming Euro 2000 clean air act puts an increasing legislative pressure for lower specific fuel consumption in order to reduce the emission of CO2 and thereby decrease the impact of the “green house” effect. One of the possible suggestions to meet these requirements for SI-engines is the gasoline direct injected (GDI) power unit. One of the key points of the success of a layout of a GDI system is the optimization of the fuel injector and combustion chamber charge formation parameters. A brief description of the basic GDI-system used during the study is given. Hereafter are outlined the computational and experimental optimization tools which have been used to produce, on a reasonable industrial time scale, the main indications to optimize the design of a given injector/chamber configuration. The paper discusses in detail the results produced by the latest enhancements introduced into the 3D multi-phase computational approach, NCF-3D.
Technical Paper

Direct Fuel Injection - A Study of Injector Requirements for Different Mixture Preparation Concepts

1997-02-24
970628
The first part of the paper outlines the main potential advantages of the direct fuel injection concept and describes the overall layout of a system in which the keystones are a piston rotary fuel delivery pump with integrated pressure regulation and electromechanical fast responding fuel injectors. Three different nozzle designs are discussed, a divergent pintle solid cone, a pintle hollow cone swirl layout and a closed cap multijet design. In the second part of the paper the used experimental high pressure dynamic test equipment is discussed. Then the results obtained by the use of phase illuminated visualisation techniques and phase Doppler analysis as well as by a 3D CFD approach are presented. The paper concludes by relating the spray patterns and the associated droplet penetration velocities, produced by the different nozzle types, to the combustion chamber layout and to the possible manufacturing precision requirements for each nozzle type.
X