Refine Your Search

Search Results

Author:
Viewing 1 to 2 of 2
Technical Paper

CAE Analysis of an Airbag Mounting Structure in an Instrument Panel

1995-02-01
950639
This paper discusses a method to reduce the reliance on testing by using CAE to arrive at a stable instrument panel support structure which is capable of resisting the deployment of the passenger airbag. This technique has been used on various instrument panels, and has proven to be useful to the instrument panel design team. Tests have shown that deployment of the airbag results in large forces which act on an instrument panel. This paper describes a method to evaluate those forces and their impact on the surrounding instrument panel structure. The method uses loads from simple bench test data. Loads at the airbag mounting locations during an airbag deployment were measured. Those loads were used in the analysis to simulate the behavior of the airbag deployment on the instrument panel substrate. The analysis enabled the design engineering team to achieve an understanding of the event and to revise the surrounding instrument panel structure design in order to improve its performance.
Technical Paper

A Crash Simulation of Instrument Panel Knee Bolster Using Hybrid III Dummy Lower Torso

1995-02-01
951067
This paper reports the analytical procedure developed for a simulation of knee impact during a barrier crash using a hybrid III dummy lower torso. A finite element model of the instrument panel was generated. The dummy was seated in mid-seat position and was imparted an initial velocity so that the knee velocity at impact corresponded to the secondary impact velocity during a barrier crash. The procedure provided a reasonably accurate simulation of the dummy kinematics. This simulation can be used for understanding the knee bolster energy management system. The methodology developed has been used to simulate impact on knee for an occupant belted or unbelted in a frontal crash. The influence of the vehicle interior on both the dummy kinematics and the impact locations was incorporated into the model. No assumptions have been made for the knee impact locations, eliminating the need to assume knee velocity vectors.
X