Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

BMW's Approach of Vehicle Functions and Systems Orientation for Developing Innovative Powertrains

2004-10-18
2004-21-0065
The dramatic increase in data and information exchange has lead to increased communication network complexity within the subsystems of the powertrain itself as well as in all other subsystems of the vehicle. It is essential to manage this complexity during the development process. Applying new processes and methods such as vehicle functions and systems orientation in a top-down structural approach creates a powerful support in development of innovative powertrains. Several technical integration examples of powertrain functions are illustrated for the purpose of demonstrating customer-related advantages. Vehicle functions and systems orientation also has significant impact on organisational structures and cooperation methods to achieve maximum synergies as well as efficient vehicle communication architectures.
Technical Paper

Physical Modelling and Use of Modern System Identification for Real-Time Simulation of Spark Ignition Engines in all Phases of Engine Development

2004-03-08
2004-01-0421
The development of modern engine management systems makes ever-more stringent demands of the tools used. In future, the Hardware-in-the-Loop (HiL) simulation, used primarily for hardware and software tests to date, is also to be used for control function parameter adaptation tasks. This results in the need to provide highly precise, real-time-capable simulation models in all phases of the development process. This can be done by the use of modern methods for identification of non-linear, static and dynamic multi-variable systems, partly in conjunction with conventional physical model structures. In particular, artificial neural networks prove flexible in use in this case. This allows modelling dependent on the information available in the various phases of the engine development process. Thus, in the early phase, it is possible to develop engine models with computation results from complex engine simulation programs such as PROMO or GT Power.
X