Refine Your Search

Search Results

Author:
Viewing 1 to 3 of 3
Technical Paper

Simulated Automotive Side Impact on the Isolated Human Pelvis: Phase I: Development of a Containment Device Phase II: Analysis of Pubic Symphysis Motion and Overall Pelvic Compression

1997-11-12
973321
PHASE I - A containment fixture was designed and manufactured to stabilize and preload isolated human pelves within a DYNATUP™ Drop Tower during simulated automotive side impact. The fixture was utilized during thirteen parametric tests aimed at determining boundary conditions which simulate inertial properties of whole cadavers during impacts of the isolated human pelvis. The resulting pelvic injuries (i.e., fractures) ranged from no fracture to complex acetabular fracture. These injuries were sustained with drop masses of 14.2-25.2 kg and impact velocities of 4.1-6.4 m/s. Peak force, measured during impact, ranged from 2.0-8.2 kN. PHASE II - Phrase II studies used nine additional human pelves to explored pelvis stiffness and pubis symphysis mobility under lateral impact to the greater trochanter. The containment device designed and tested in Phase I was utilized to stabilize and compressively preload the specimens during impact.
Technical Paper

Spinal Burst or Compression Fractures within Automotive Crashes Due to Vertical Force Components

1997-02-24
970498
The purpose of this research was to present and analyze a previously unreported mechanism of injury within the automotive crash environment - spinal burst or compression fractures due to a vertical force component. Spinal burst fractures are comminuted fractures of the vertebral body which are often associated with retropulsed bone fragments into the spinal. Compression fractures are less traumatic fractures of the vertebral body with minimal comminution. Both fracture types can have varying degrees of neurologic deficit. The mechanism of injury is hypothesized to be a high energy compressive load along the axis of the spine initiated through the buttocks and pelvis or through torso augmentation (inertial loading of the lumbar spine by the torso). Four crashes are presented as evidence of this injury mechanism within the automotive crash environment: two in the United States and two in Germany.
Technical Paper

A NASS-Based Investigation of Pelvic Injury within the Motor Vehicle Crash Environment

1996-11-01
962419
Automotive collision data from the National Accident Sampling System database (compiled by the National Highway Traffic Safety Administration) was analyzed in regard to occupants who sustained major pelvic injuries during 1980-1992. These injuries included pelvic fracture, pelvic dislocation, pelvic separation, pelvic crush, and pelvic fracture/dislocation. All collisions analyzed were required to have a computed change in velocity during the collision, as well as data concerning injuries sustained by the occupants. The purpose of this research was to retrospectively analyze motor vehicle crash data to establish incidence of major pelvic injuries within automotive collisions. From the study, 1.8% of all collisions evaluated resulted in major pelvic injuries. Twenty-two percent of all crashes were side impact collisions and 8% of these side impact collisions resulted in occupants sustaining major pelvic injuries.
X