Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Development of Combustion System for a 1-Liter Advanced Turbocharged Gasoline Direct Injection 3-Cylinder Engine

2016-10-17
2016-01-2243
In recent years, more attention has been focused on environment pollution and energy source issues. As a result, increasingly stringent fuel consumption and emission legislations have been implemented all over the world. For automakers, enhancing engine’s efficiency as a must contributes to lower vehicle fuel consumption. To reach this goal, Geely auto started the development of a 3-cylinder 1.0L turbocharged direct injection (TGDI) gasoline engine to achieve a challenging fuel economy target while maintaining fun-to-drive and NVH performance. Demanding development targets for performance (specific torque 205Nm/L and specific power 100kW/L) and excellent part-load BSFC were defined, which lead to a major challenge for the design of the combustion system. Considering air/fuel mixture, fuel wall impingement and even future potential for lean burn combustion, a symmetrical layout and a central position for the injector with 200bar injection pressure was determined.
Technical Paper

Oil Aeration in Combustion Engines - Analysis and Optimization

2001-03-05
2001-01-1074
Like all technical fluids, lubricants are able to solve gases. While solved gas is a neutral part of the lubricant, dissolved gas has an influence especially on the compressibility behavior. The effects of oil aeration on engine drive causes malfunctions of several components. A successful optimization of the oil circulation concerning the oil aeration presupposes a safe and reproducible measuring procedure. The FEV has developed a measurement apparatus according to the principle of the volume measurement which allows a simple but efficient oil aeration measurement.
Technical Paper

Exhaust Heat Recovery System for Modern Cars

2001-03-05
2001-01-1020
The fuel consumption and the emissions of modern passenger cars are highly affected by the fluid and material temperatures of the engine. Unfortunately, the high thermal efficiencies of Direct Injection (DI) Diesel and Spark Ignition (SI) engines cause in many driving situations low heat transfer to the engine components and especially to the oil and the coolant. In these conditions the normal operating temperatures are not achieved. Especially at low ambient temperatures and low engine loads the requirement of a comfortable cabin heating and a fast warm-up of engine oil and coolant cannot be satisfied simultaneously. To reach the required warm-up performance, an Exhaust Heat Recovery System (EHRS) will be demonstrated. Further design and optimization processes for modern cooling systems in fuel-efficient engines require numerical and experimental investigations of supplemental heater systems to meet all requirements under all circumstances.
Technical Paper

Cooling System Development and Optimization with the Computer Code COOL

1998-02-23
980425
Because of increasing stresses in combustion engines and critical comfort requirements of engine warm-up behavior, FEV has placed a special emphasis on solving cooling system problems. In addition to 3D-CFD calculations and special FEV measurement techniques - such as fiber optical cavitation detection, instationary heat balance measurements during warm-up, etc. - FEV has developed a 1D computer code, known as ‘COOL’, to optimize cooling systems already during the engine design phase or to analyse and eliminate weaknesses in the coolant circuit of existing engines. Beside the algorithm and structure of COOL the paper mainly presents the analysis capabilities of the code. In this connection the emphasis is placed on examples to the current OEMs problem: transient warm-up of DI-diesel engines. The COOL-code is so far a unique CAE tool which exclusively has been applied to projects conducted by FEV. Because of the increasing demand it is planned to commercialize the code in 1998.
X