Refine Your Search

Search Results

Author:
Viewing 1 to 5 of 5
Technical Paper

Effect of Cell Shape on Mass Transfer and Pressure Loss

2003-03-03
2003-01-0659
To meet stringent emissions regulations, high conversion efficiency is required. This calls for advanced catalyst substrates with thinner walls and higher cell density. Higher cell density is needed because it brings higher mass transfer from the gas to the substrate wall. Basically, the increase in total surface area (TSA) causes higher mass transfer. However, not only the TSA, but the cell shape also has a great effect on mass transfer. There are two main kinds of substrates. One is the extruded ceramic substrate and the other is the metal foil type substrate. These have different cell shapes due to different manufacturing processes. For the extruded ceramic substrate, it is possible to fabricate various cell shapes such as triangle, hexagon, etc. as well as the square shape. The difference in the cell shape changes not only the mass transfer rate, but also causes pressure loss change. This is an important item to be considered in the substrate design.
Technical Paper

Utilization of Advanced Three-Way Catalyst Formulations on Ceramic Ultra Thin Wall Substrates for Future Legislation

2002-03-04
2002-01-0349
The LEV II and SULEV/PZEV emission standards legislated by the US EPA and the Californian ARB will require continuous reduction in the vehicles' emission over the next several years. Similar requirements are under discussion in the European Union (EU) in the EU Stage V program. These future emission standards will require a more efficient after treatment device that exhibits high activity and excellent durabilty over an extended lifetime. The present study summarizes the findings of a joint development program targeting such demanding future emission challenges, which can only be met by a close and intensive co-operation of the individual expert teams. The use of active systems, e.g. HC-adsorber or electrically heated light-off catalysts, was not considered in this study. The following parameters were investigated in detail: The development of a high-tech three-way catalyst technology is described being tailored for applications on ultra thin wall ceramic substrates (UTWS).
Technical Paper

Numerical Study on Forced Regeneration of Wall-Flow Diesel Particulate Filters

2001-03-05
2001-01-0912
A computational model which describes the combustion and heat transfer that takes place during forced regeneration of honeycomb structured wall flow type diesel particulate filter was developed. In this model, heat released by the soot- oxygen reaction, convection heat transfer in the gas phase, conductive heat transfer in solid walls, and heat transfer between the gas and wall of each honeycomb cell at various radial positions in a filter are calculated. Each honeycomb cell was modeled as one solid phase and two gas phases and these three phases were divided in the axial direction into small elements. Conductive heat transfer between the small solid elements and convection heat transfer between the small gas elements were calculated for each small time increment. Conductive radial heat transfer between honeycomb cells was also calculated.
Technical Paper

Diesel Particulate Filters Made of Newly Developed SiC

2001-03-05
2001-01-0192
This paper presents the performance and durability test results of a newly developed diesel particulate filter (DPF) made of silicon carbide (SiC). While SiC offers thermal resistance that is superior to cordierite, it requires a complex, multi-segment bonded design structure due to the thermal expansion coefficient that is higher than cordierite, which leads to a higher thermal stress during regeneration. This company has developed a honeycomb slit-type DPF made from a newly developed SiC through the application of its own honeycomb forming technology and material technology, and has also succeeded in controlling the cost of the product through a simplified design.
Technical Paper

A Structurally Durable EHC for the Exhaust Manifold

1994-03-01
940466
It is well known that an EHC (Electrically Heated Catalyst) is very effective in reducing cold start HC emissions. However, the large electric power consumption of the EHC is a major technical issue. When installed in the exhaust manifold, the EHC can take advantage of exhaust heat to warm up faster, resulting in a reduced electric power demand. Therefore, a structurally durable EHC which can withstand the severe manifold conditions is desirable. Through the use of a extruded monolithic metal substrate, with a flexible hexagonal cell structure and a special canning method, we have succeeded in developing a structurally durable EHC. This new EHC installed in the exhaust manifold with a light-off catalyst directly behind it demonstrated a drastic reduction in FTP (Federal Test Procedure) Total HC emissions.
X