Refine Your Search

Search Results

Author:
Viewing 1 to 5 of 5
Journal Article

Smart Portable Tools: The Practical Solution to Agile Assembly

2013-09-17
2013-01-2295
Fully autonomous systems are seen as the ultimate solution to all manufacturing problems due to their consistent quality and ability to improve rates, but they also have one key disadvantage: Limited equipment versatility. This shortcoming becomes most apparent when trying to apply automation to aircraft final assembly. The variety of jobs is great and would necessitate the development of many unique solutions. Therefore a robotic system designed for one job on one aircraft version might be useless on the next version. Also there are many tight spaces and complex jobs where automation is just not practical, meaning that workers with portable tools will always have some presence in production. The modern smart portable tool as exemplified by the Novator PM Series orbital drill motor is capable of matching the quality and speed of a robotic system while still maintaining the ability to be applicable over a wide variety of jobs.
Technical Paper

Drilling Mixed Stack Materials for the BOEING 787

2010-09-28
2010-01-1867
The new combinations such as composites and titanium that are being used on today's new airplanes are proving to be very challenging when drilling holes during manufacturing and assembly operations. Gone are the days of hand drilling with high speed steel drills through soft aluminum structure, after which aluminum rivets would be swaged into those holes with very generous tolerances. The drilling processes today need to use cutter materials hard enough and tough enough to cut through hard metals such as titanium, yet be sharp enough to resistant abrasion and maintain size when drilling through composites. There is a constant search for better cutters and drills that can drill a greater number of holes. The cost of materials used in today's aircraft is much higher. The cutting tools are more expensive and the hole tolerances are much tighter.
Journal Article

Development of Orbital Drilling for the Boeing 787

2008-09-16
2008-01-2317
The new materials and material combinations such as composites and titanium combinations used on today's new airplanes are proving to be very challenging when drilling holes during manufacturing and assembly operations. Orbital hole drilling technology has shown a great deal of promise for generating burr free, high quality holes in hard metals and in composite materials. This paper will show some of the orbital drilling development work Boeing is doing with Novator to overcome the obstacles of drilling holes in a combination of both hard metals and composites. The paper will include a new portable orbital drilling system designed for these challenging applications as well as some test results achieved with this system.
Technical Paper

Development and Deployment of Orbital Drilling at Boeing

2006-09-12
2006-01-3152
Orbital hole drilling technology has shown a great deal of promise for cost savings on applications in the aerospace industry where burr free, high quality holes are a necessity. This presentation will show some of the basic research on orbital drilling development Boeing is doing with the Advanced Manufacturing Research Center at Sheffield University and the deployment of the technology into production programs within The Boeing Company.
Technical Paper

Integrated Metrology & Robotics Systems for Agile Automation

2000-09-19
2000-01-3033
Aircraft manufacturing in the 21st century sees a future much different to that seen one and two decades before. Manufacturers of both military and commercial aircraft are challenged to become Lean, Agile and Flexible. As progress is slowly made toward introducing advanced assembly systems into production, the overall cost of automation is now more closely scrutinized. After spending tens of millions of dollars on large automated systems with deep foundations, many manufacturers find themselves locked into high cost manufacturing systems that have specific, inflexible configurations. This kind of scenario has caused a shift in the attitude of airframe assemblers, to go back to basics. Lean manufacturing is seen as a way to build aircraft with very low investment in equipment and tools. Today's advanced systems developers do understand the need for more affordable assembly systems.
X